“Oh Snap” – Helping Users Align Digital Objects on Touch Interfaces

  • Jennifer Fernquist
  • Garth Shoemaker
  • Kellogg S. Booth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6948)

Abstract

We introduce a new snapping technique, Oh Snap, designed specifically for users of direct touch interfaces. Oh Snap allows users to easily align digital objects with lines or other objects using 1-D or 2-D translation or rotation. Our technique addresses two major drawbacks of existing snapping techniques: they either cause objects to “jump” to snap locations, preventing placement very close to those locations, or they “expand” motor space so that on direct-touch interfaces objects lag behind the user’s finger. Oh Snap addresses both of these problems using an asymmetric velocity profile similar to a technique for filtering degrees of freedom in multi-touch gestures that was introduced by Nacenta et al. (2009). Oh Snap applies the velocity profile to multiple “snapping” constraints. A user study revealed a 40% performance improvement over no snapping for 1-D translation, 2-D translation, and rotation tasks when snap lines or angles were targeted. We found that Oh Snap performs no worse than traditional snapping, while retaining its important functional benefits. The study also investigated optimal parameter settings and Oh Snap’s accuracy in supporting the placement of objects near to, but not at, snap locations, which traditional snapping techniques do not support. Oh Snap was found to be competitive with non-snapping interfaces for these tasks.

Keywords

User Study Snap Width Trial Time Movement Type Target Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Electronic Supplementary material (16,982 KB)

References

  1. 1.
    Ahlström, D., Hitz, M., Leitner, G.: An evaluation of sticky and force enhanced targets in multi target situations. In: Proc. NordiCHI 2006, pp. 58–67 (2006)Google Scholar
  2. 2.
    Albinsson, P.-A., Zhai, S.: High precision touch screen interaction. In: Proc. CHI 2003, pp. 105–112 (2003)Google Scholar
  3. 3.
    Aliakseyeu, D., Subramanian, S., Lucero, A., Gutwin, C.: Interacting with piles of artifacts on digital tables. In: Proc. AVI 2006, pp. 159–162 (2006)Google Scholar
  4. 4.
    Baudisch, P., Cutrell, E., Hinckley, K., Eversole, A.: Snap-and-go: helping users align objects without the modality of traditional snapping. In: Proc. CHI 2005, pp. 301–310 (2005)Google Scholar
  5. 5.
    Benko, H., Wilson, A.D., Baudisch, P.: Precise selection techniques for multi-touch screens. In: Proc. CHI 2006, pp. 1263–1272 (2006)Google Scholar
  6. 6.
    Bier, E.A.: Snap-dragging in three dimensions. In: Proc. I3D 1990, pp. 193–204 (1990)Google Scholar
  7. 7.
    Bier, E.A., Stone, M.C.: Snap-dragging. In: Proc. SIGGRAPH 1986, pp. 233–240 (1986)Google Scholar
  8. 8.
    Bjørneseth, F.B., Dunlop, M.D., Strand, J.P.: Dynamic positioning systems: usability and interaction styles. In: Proc. NordiCHI 2008, pp. 43–52 (2008)Google Scholar
  9. 9.
    Frisch, M., Dachselt, R.: Benefits of interactive display environments in the software development process. In: Proc. CHASE 2008, pp. 53–56 (2008)Google Scholar
  10. 10.
    Gleicher, M.: Image snapping. In: Proc. SIGGRAPH 1995, pp. 183–190 (1995)Google Scholar
  11. 11.
    Gutwin, C., Greenberg, S.: Design for individuals, design for groups: tradeoffs between power and workspace awareness. In: Proc. CSCW 1998, pp. 207–216 (1998)Google Scholar
  12. 12.
    Holz, C., Baudisch, P.: The generalized perceived input point model and how to double touch accuracy by extracting fingerprints. In: Proc. CHI 2010, pp. 581–590 (2010)Google Scholar
  13. 13.
    Khalilbeigi, M., Steimle, J., Muhlhauser, M.: Interaction techniques for hybrid piles of documents on interactive tabletops. In: Proc CHI EA 2010, pp. 3943–3948 (2010)Google Scholar
  14. 14.
    Kruger, R., Carpendale, S., Scott, S.D., Greenberg, S.: How people use orientation on tables: comprehension, coordination and communication. In: Proc. GROUP 2003, pp. 369–378 (2003)Google Scholar
  15. 15.
    Kruger, R., Carpendale, S., Scott, S.D., Tang, A.: Fluid integration of rotation and translation. In: Proc. CHI 2005, pp. 601–610 (2005)Google Scholar
  16. 16.
    Lecuyer, A.: Simulating haptic feedback using vision: A survey of research and applications of pseudo-haptic feedback. Presence: Teleoper. Virtual Environ. 18(1), 39–53 (2009)CrossRefGoogle Scholar
  17. 17.
    Liu, J., Pinelle, D., Sallam, S., Subramanian, S., Gutwin, C.: TNT: improved rotation and translation on digital tables. In: Proc. GI 2006, pp. 25–32 (2006)Google Scholar
  18. 18.
    Mandryk, R.L., Rodgers, M.E., Inkpen, K.M.: Sticky widgets: pseudo-haptic widget enhancements for multi-monitor displays. In: Proc. CHI 2005, pp. 1621–1624 (2005)Google Scholar
  19. 19.
    Micire, M., Desai, M., Courtemanche, A., Tsui, K.M., Yanco, H.A.: Analysis of natural gestures for controlling robot teams on multi-touch tabletop surfaces. In: Proc. ITS 2009, pp. 41–48 (2009)Google Scholar
  20. 20.
    Nacenta, M.A., Baudisch, P., Benko, H., Wilson, A.: Separability of spatial manipulations in multi-touch interfaces. In: Proc. GI 2009, pp. 175–182 (2009)Google Scholar
  21. 21.
    Nóbrega, R., Sabino, A., Rodrigues, A., Correia, N.: Flood emergency interaction and visualization system. In: Sebillo, M., Vitiello, G., Schaefer, G. (eds.) VISUAL 2008. LNCS, vol. 5188, pp. 68–79. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Olwal, A., Feiner, S.: Spatially aware handhelds for high-precision tangible interaction with large displays. In: Proc. TEI 2009, pp. 181–188 (2009)Google Scholar
  23. 23.
    Olwal, A., Feiner, S., Heyman, S.: Rubbing and tapping for precise and rapid selection on touch-screen displays. In: Proc. CHI 2008, pp. 295–304 (2008)Google Scholar
  24. 24.
    Raisamo, R., Raiha, K.-J.: A new direct manipulation technique for aligning objects in drawing programs. In: Proc. UIST 1996, pp. 157–164 (1996)Google Scholar
  25. 25.
    Reetz, A., Gutwin, C., Stach, T., Nacenta, M., Subramanian, S.: Superflick: a natural and efficient technique for long-distance object placement on digital tables. In: Proc. GI 2006, pp. 163–170 (2006)Google Scholar
  26. 26.
    Ringel Morris, M., Paepcke, A., Winograd, T., Stamberger, J.A.: TeamTag: exploring centralized versus replicated controls for co-located tabletop groupware. In: Proc. CHI 2006 pp. 1273–1282 (2006)Google Scholar
  27. 27.
    Siek, K.A., Rogers, Y., Connelly, K.H.: Fat finger worries: How older and younger users physically interact with PDAs. In: Costabile, M.F., Paternó, F. (eds.) INTERACT 2005. LNCS, vol. 3585, pp. 267–280. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Sutherland, I.E.: Sketchpad: a man-machine graphical communication system. In: Proc. AFIPS 1963, pp. 329–346 (1963)Google Scholar
  29. 29.
    Vogel, D., Baudisch, P.: Shift: A technique for operating pen-based interfaces using touch. In: Proc. CHI 2007, pp. 1063–1072 (2007)Google Scholar
  30. 30.
    Voida, S., Tobiasz, M., Stromer, J., Isenberg, P., Carpendale, S.: Getting practical with interactive tabletop displays: designing for dense data, “fat fingers,” diverse interactions, and face-to-face collaboration. In: Proc. ITS 2009, pp. 109–116 (2009)Google Scholar
  31. 31.
    Wang, F., Ren, X.: Empirical evaluation for finger input properties in multi-touch interaction. In: Proc. CHI 2009, pp. 1063–1072 (2009)Google Scholar
  32. 32.
    Wigdor, D., Williams, S., Cronin, M., Levy, R., White, K., Mazeev, M., Benko, H.: Ripples: utilizing per-contact visualizations to improve user interaction with touch displays. In: Proc. UIST 2009, pp. 3–12 (2009)Google Scholar
  33. 33.
    Wobbrock, J.O., Morris, M.R., Wilson, A.D.: User-defined gestures for surface computing. In: Proc. CHI 2009, pp. 1083–1092 (2009)Google Scholar
  34. 34.
    Yang, L., Wang, F., Deng, H.: A survey on target selection technique for touch sensing devices. In: Proc. MVHI 2010, pp. 534–537 (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Jennifer Fernquist
    • 1
  • Garth Shoemaker
    • 1
  • Kellogg S. Booth
    • 1
  1. 1.Department of Computer ScienceThe University of British ColumbiaVancouverCanada

Personalised recommendations