Photon Management: Photonic Crystals, Photosynthesis and Semiconductor–Enzyme Junctions

Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 157)

Abstract

In the preceding Chap. 4, high energy photons were applied for device fabrication and, also, for the analysis of (photo)electrochemically modified silicon. In addition, the use of soft X-rays in the energetic analysis of metallo-proteins and in materials development was emphasized.

Keywords

Photonic Crystal Transverse Electrical Excitation Energy Transfer Cherenkov Radiation Normal Hydrogen Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Phys. Rev. 28, 1049–1070 (1926)ADSMATHCrossRefGoogle Scholar
  2. 2.
    J.C. Slater, An augmented plane wave method for the periodic potential problem, Phys. Rev. 92, 603–608 (1953)ADSMATHCrossRefGoogle Scholar
  3. 3.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976)Google Scholar
  4. 4.
    T. Vo-Dinh, H.-N. Wang, J. Scaffaldi, Plasmonic nanoprobes for SERS biosensing and bioimaging, J. Biophoton. 3, 89–102 (2010)CrossRefGoogle Scholar
  5. 5.
    S.Y. Lin et al., A three-dimensional photonic crystal operating at infrared wavelengths, Nature 394, 251–253 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    E. Yablonovitch, Inhibited spontaneous emission in solid state physics and electronics, Phys. Rev. Lett. 58, 2059–2062 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    V. Lehmann, The physics of macropore formation in low-doped n-type silicon, J. Electrochem. Soc. 140, 2836–2843 (1993)CrossRefGoogle Scholar
  8. 8.
    U. Grüning, V. Lehmann, Two-dimensional photonic crystal based on macroporous silicon, Thin Solid Films 276, 151–154 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    J.D. Joannopoulos, S.G. Johnson, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 2008)MATHGoogle Scholar
  10. 10.
    R.D. Meade, A.M. Rappe, K.D. Brommer, J.D. Joannopoulos, O.L. Alerhand, J. Jin, The Finite-Element Method in Electromagnetics (Wiley, New York, 1993)Google Scholar
  11. 11.
    K.M. Ho, C.T. Chan, C.M. Soukoulis, Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett. 65, 3152–3155 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    J.S. Foresi et al., Photonic-band gap microcavities in optical waveguides, Nature 390, 143–145 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    J. Kerr, A new relation between electricity and light: dielectric media birefringent, Philos. Mag. 50, 446–458 (1875)Google Scholar
  14. 14.
    A. Hasegawa, in Optical Solitons in Fibers, Springer Tracts in Modern Physics, vol. 116 (Springer, Heidelberg, 1989)Google Scholar
  15. 15.
    N. Aközbek, S. John, Optical solitary waves in two- and three-dimensional nonlinear photonic band-gap structures, Phys. Rev. E 57, 2287–2319 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    H.S. Sözüer, J.W. Haus, R. Inguva, Photonic bands – convergence problems with the plane wave method, Phys. Rev. B 45, 13962–13972 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    J.E.G.J. Wijnhoven, W.L. Vos, Preparation of photonic crystals made of air spheres in titania, Science 281, 802–804 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76, 4773–4776 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    S.J. Smith, E.M. Purcell, Visible light from localized surface charges moving across a grating, Phys. Rev. 92, 1069(1953)ADSCrossRefGoogle Scholar
  20. 20.
    X. Artru, G.B. Yodh, G. Mennessier, Practical theory of the multilayered transition radiation detector, Phys. Rev. D 12, 1289–1306 (1975)ADSCrossRefGoogle Scholar
  21. 21.
    F. J. Garcia de Abajo, A.G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M.O. Wolf, P.M. Echenique, Cherenkov effect as a probe of photonic nanostructures, Phys. Rev. Lett. 91, 143902(2003)ADSCrossRefGoogle Scholar
  22. 22.
    D. Ugarte, C. Colliex, P. Trebbia, Surface- and interface-plasmon modes on small semiconducting spheres, Phys. Rev. B 45, 4332–4334 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    A.G. Koutsioubas, N. Spiliopoulos, D. Anastassopoulos, A.A. Vradis, G.D. Priftis, Nanoporous alumina enhanced surface plasmon resonance sensors, J. Appl. Phys. 103, 1–6 (2008)CrossRefGoogle Scholar
  24. 24.
    A. Ben-Shem, F. Frolow, N. Nelson, Crystal structure of plant photosystem I, Nature 426, 630–635 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    M. Rögner, E.J. Boekema, J. Barber, How does photosystem 2 split water? The structural basis of efficient energy conversion, Trends Biochem. Sci. 21, 44–49 (1996)CrossRefGoogle Scholar
  26. 26.
    J. Standfuss, A.C. Terwisscha van Scheltinga1, M. Lamborghini, W. Kühlbrandt, Mechanisms of photoprotection and nonphotochemical quenching in pea light harvesting complex at 2.5A resolution, EMBO J. 24, 919–928 (2005)Google Scholar
  27. 27.
    B. Kok, B. Forbush, M. McGloin, Cooperation of charges in photosynthetic O2 evolution. 1. A linear 4-step mechanism, Photochem. Photobiol. 11, 457–475 (1970)Google Scholar
  28. 28.
    T.M. Bricker, A time-resolved vibrational spectroscopy glimpse into the oxygen-evolving complex of photosynthesis, PNAS 103, 7205–7206 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    I.J. Hewitt, J.-K. Tang, N.T. Madhu, R. Clérac, G. Buth, C.E. Ansona, A.K. Powell, A series of new structural models for the OEC in photosystem II, Chem. Commun. 25, 2650–2652 (2006)CrossRefGoogle Scholar
  30. 30.
    W. Lubitz, E.J. Reijerse, J. Messinger, Solar water-splitting into H2 and O2: design principles of photosystem II and hydrogenases, Energy Environ. Sci. 1, 15–31 (2008)CrossRefGoogle Scholar
  31. 31.
    R. Hill, F. Bendall, Function of the two cytochrome components in chloroplasts: a working hypothesis, Nature 186, 136–137 (1960)ADSCrossRefGoogle Scholar
  32. 32.
    M. Calvin, The photosynthetic cycle, Bull. Soc. Chim. Biol. 38, 1233–1244 (1956)Google Scholar
  33. 33.
    X. Hu, A. Damjanovic, T. Ritz, K. Schulten, Architecture and mechanism of the light-harvesting apparatus of purple bacteria, Proc. Natl. Acad. Sci. USA 95, 5935–5941 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Th.v. Förster, Intermolecular energy migration and fluorescence, Ann. d. Phys. 2, 55–75 (1948)Google Scholar
  35. 35.
    G.D. Scholes, Long range resonance energy transfer in molecular systems, Annu. Rev. Phys. Chem. 54, 57–87 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    B. Schuler, E.A. Lipman, P.J. Steinbach, M. Kumke, W.A. Eaton, Polyproline and the “spectroscopic ruler” revisited with single molecule fluorescence, Proc. Natl. Acad. Sci. USA 102, 2754–2759 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    X. Hu, T. Ritz, A. Damjanovic, F. Autenrieth, K. Schulten, Photosynthetic apparatus of purple bacteria, Q. Rev. Biophys. 35, 1–62 (2002)CrossRefGoogle Scholar
  38. 38.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006)CrossRefGoogle Scholar
  39. 39.
    P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford, Clarendon, 1958), p. 180MATHGoogle Scholar
  40. 40.
    L. Stryer, Fluorescence energy transfer as a spectroscopic ruler, Annu. Rev. Biochem. 47, 819–846 (1978)CrossRefGoogle Scholar
  41. 41.
    J. Zheng, FRET and its application as a molecular ruler, in Handbook of Modern Biophysics, Biomedical Applications of Biophysics, vol. 3 (Humana Press, Riverside, New Jersey, 2010), pp. 119–136Google Scholar
  42. 42.
    S. Jang, M.D. Newton, R.J. Silbey, Multichromophoric Förster resonance energy transfer, Phys. Rev. Lett. 92, 1–4 (2004)Google Scholar
  43. 43.
    G.R. Fleming, G.D. Scholes, Quantum mechanics for plants, Nature 431, 256–257 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    G. Jutz, A. Böker, Bionanoparticles as functional macromolecular building blocks – A new class of nanomaterials, Polymer 52, 211–232 (2011)CrossRefGoogle Scholar
  45. 45.
    M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C: Photochem. Rev. 4, 145–153 (2003)CrossRefGoogle Scholar
  46. 46.
    N. Robertson, Optimizing dyes for dye-sensitized solar cells, Angew. Chem. Int. Ed. 45, 2338–2345 (2006)CrossRefGoogle Scholar
  47. 47.
    D.L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21, 836–851 (1953)ADSCrossRefGoogle Scholar
  48. 48.
    B.P. Paulson, J.R. Miller, W.-X. Gan, G. Closs, Superexchange and sequential mechanisms in charge transfer with a mediating state between the donor and acceptor, J. Am. Chem. Soc. 127, 4860–4868 (2005)CrossRefGoogle Scholar
  49. 49.
    H. Lederer, O. Schatz, R. May, H. Crespi, J.-L. Darlix, S. F.J. LeGrice, H. Heumann, Domain structure of the human immunodeficiency virus reverse transcriptase, EMBO J. 11, 1131–1139 (1992)Google Scholar
  50. 50.
    M. Tarek, G.J. Martyna, D.J. Tobias, Amplitudes and frequencies of protein dynamics: analysis of discrepancies between neutron scattering and molecular dynamic simulations, J. Am. Chem. Soc. 122, 10450–10451 (2000)CrossRefGoogle Scholar
  51. 51.
    D. Gust, T.A. Moore, A.L. Moore, Mimicking photosynthetic solar energy transduction, Acc. Chem. Res. 34, 40–48 (2001)CrossRefGoogle Scholar
  52. 52.
    H. Jungblut, S.A. Campbell, M. Giersig, D.J. Müller, H.J. Lewerenz, STM observations of biomolecules on layered materials, Farad. Disc. 94, 183–198 (1992)ADSCrossRefGoogle Scholar
  53. 53.
    H.J. Lewerenz, Enzyme-semiconductor interactions: routes from fundamental aspects to photoactive devices, Phys. Stat. Sol (b) 245, 1884–1898 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    H.J. Lewerenz, H. Jungblut, S.A. Campbell, D.J. Müller, Direct observation of reverse transcriptases by STM, AIDS Res. Hum. Retroviruses 8, 1663–1667 (1992)CrossRefGoogle Scholar
  55. 55.
    B.V. Derjarguin, L. Landau, Acta Physicochimica (URSS) 14, 633 (1941)Google Scholar
  56. 56.
    E.J. Verwey, J.T.G. Overbeek, “Theory of theStability of Lyophobic Colloids” (Elsevier, Amsterdam, 1948)Google Scholar
  57. 57.
    H.J. Lewerenz, Surface states and Fermi level pinning at semiconductor/electrolyte junctions, J. Electroanal. Chem. 356, 121–143 (1993)CrossRefGoogle Scholar
  58. 58.
    S.A. Campbell, J.R. Smith, H. Jungblut, H.J. Lewerenz, Protein imaging on a semiconducting substrate: a scanning tunnelling microscopy investigation, J. Electroanal. Chem. 599, 313–322 (2007)CrossRefGoogle Scholar
  59. 59.
    H.J. Lewerenz, K. Skorupska, J.R. Smith, S.A. Campbell, Surface chemistry and electronics of semiconductor-nanosystem junctions II: enzyme immobilization, charge transport aspects and scanning probe microscopy imaging, J. Sol. State Electrochem. 13 195–203 (2009)CrossRefGoogle Scholar
  60. 60.
    R. Guckenberger, M. Heim, G. Cevec, H.F. Knapp, W. Wiegräbe, A. Hillebrand, Scanning tunnelling microscopy of insulators and biological specimens based on lateral conductivity of ultrathin water films, Science 266, 1538–1540 (1994)ADSCrossRefGoogle Scholar
  61. 61.
    R. Guckenberger, M. Heim, STM on wet insulators: Electrochemistry or tunnelling? Response to a technical comment, Science 270, 1851–1852 (1995)Google Scholar
  62. 62.
    S.M. Sze, Semiconductor Devices (Wiley, New York, 1980)Google Scholar
  63. 63.
    K. Maturova, R.A. Janssen, M. Kemerink, Connecting scanning tunneling spectroscopy to device performance for polymer:fullerene organic solar cells, ACS Nano 4, 1385–1392 (2010)CrossRefGoogle Scholar
  64. 64.
    H.-W. Jochims, M. Schwell, J.-L. Chotin, M. Clemino, F. Dulieu, H. Baumgärtel, S. Leach, Photoion mass spectrometry of five amino acids in the 6–22 eV photon energy range, Chem. Phys. 298, 279–297 (2004)CrossRefGoogle Scholar
  65. 65.
    R.N. Jones, H.J. Greech, The ultraviolet absorption spectra of protein solutions, JOSA 33, 209–217 (1943)ADSCrossRefGoogle Scholar
  66. 66.
    P. Facci, D. Alliata, L. Andolfi, B. Schnyder, R. Kötz, Formation and characterization of protein monolyers on oxygen-exposing surfaces by multiple-step self-chemisorption, Surf. Sci. 504, 282–292 (2002)ADSCrossRefGoogle Scholar
  67. 67.
    T. Koslowski, Localized and extended electronic eigenstates in proteins, J. Chem. Phys. 110, 12233–12239 (1999)ADSCrossRefGoogle Scholar
  68. 68.
    D.M. Kolb, W. Boeck, K.-M. Ho, S.H. Liu, Observation of surface states on Ag(1 0 0) by infrared and visible electroreflectance spectroscopy, Phys. Rev. Lett. 47, 1921–1924 (1981)ADSCrossRefGoogle Scholar
  69. 69.
    H. Jungblut, J. Jakubowicz, S. Schweizer, H. J. Lewerenz, Mechanism of initial structure formation on highly doped n-Si(111), J. Electroanal. Chem. 527, 41–46 (2002)CrossRefGoogle Scholar
  70. 70.
    S.K. Pal, J. Peon, A.H. Zewail, Biological water at the protein surface: dynamical salvation probed directly with femtosecond resolution, Proc. Natl. Acad. Sci. USA 99, 1763–1768 (2002)ADSCrossRefGoogle Scholar
  71. 71.
    E.W. Schlag, S.-Y. Sheu, D.-Y. Yang, H.L. Selzle, S.H. Lin, Charge conductivity in peptides; dynamic simulations of a bifunctional model supporting experimental data, Proc. Natl. Acad. Sci. USA 97, 1068–1072 (2000)ADSCrossRefGoogle Scholar
  72. 72.
    X. Shi, F.H. Long, H. Lu, K.B. Eisenthal, Femtosecond electron solvation kinetics in water, J. Phys. Chem. 100, 11903–11906 (1996)CrossRefGoogle Scholar
  73. 73.
    P. Kambhampati, D.H. Song, T.W. Kee, P.F. Barbara, Solvation dynamics of the hydrated electron depends on its initial degree of electron delocalization, J. Phys. Chem. A 106, 2374–2378 (2002)CrossRefGoogle Scholar
  74. 74.
    R.A. Marcus, On the theory of electron-transfer reactions VI. Unified treatment for homogeneous and electrode reactions, J. Chem. Phys. 43, 679–702 (1965)Google Scholar
  75. 75.
    H. Gerischer, Über den Ablauf von Redoxreaktionen an Metallen und an Halbleitern. I Allgemeines zum Elektronenübergang zwischen einem Festkörper und einem Redoxelektrolyten, Z. Phys. Chem. N. F. 26, 223–247 (1960)Google Scholar
  76. 76.
    H. Gerischer, Über den Ablauf von Redoxreaktionen an Metallen und an Halbleitern. III. Halbleiterelektroden, Z. Phys. Chem. N. F. 27, 48–79 (1961)Google Scholar
  77. 77.
    M. Zielinski, M. Samoc, An investigation of the Poole-Frenkel effect by thermally stimulated current technique, J. Phys. D: Appl. Phys. 10, L105–L107 (1977)ADSCrossRefGoogle Scholar
  78. 78.
    T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Electrical conductivity of individual carbon nanotubes, Nature 382, 54–56 (1996)ADSCrossRefGoogle Scholar
  79. 79.
    B. O’Reagan, M. Grätzel, A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737–740 (1991)CrossRefGoogle Scholar
  80. 80.
    B.A. Gregg, Excitonic solar cells, J. Phys. Chem. B 107, 4688–4698 (2003)CrossRefGoogle Scholar
  81. 81.
    J.M. Kron et al., Nanocrystalline dye-sensitized solar cells having maximum performance, Prog. Photovolt: Res. Appl. 15, 1–18 (2007)MathSciNetCrossRefGoogle Scholar
  82. 82.
    S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch, Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis, J. Phys. Chem. B 104, 8920–8924 (2000)CrossRefGoogle Scholar
  83. 83.
    I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors, J. Appl. Phys. 94, 3675–3696 (2003)ADSCrossRefGoogle Scholar
  84. 84.
    K. Skorupska, T. Vo-Dinh, H.J. Lewerenz, Scanning probe characterization of enzymes deposited onto step-bunched silicon nanostructures, Phys. Scripta 79, 1–4 (2009)CrossRefGoogle Scholar
  85. 85.
    K. Skorupska, Ch. Pettenkofer, S. Sadewasser, F. Streicher, W. Haiss, H.J. Lewerenz, Electronic and morphological properties of the electrochemically prepared step bunched silicon (111) surface, Phys. Stat. Sol. B 248, 361–369 (2011)ADSCrossRefGoogle Scholar
  86. 86.
    K. Skorupska, H.J. Lewerenz, P. Ugarte-Berzal, A. Rutkowska, P.J. Kulesza, unpublished resultsGoogle Scholar
  87. 87.
    K. Skorupska, P. Ugarte-Berzal, M. Lunlow, H.J. Lewerenz, unpublished resultsGoogle Scholar
  88. 88.
    R.A. Grimme, C.E. Lubner, D.A. Bryant, J.H. Golbeck, Photosystem I/molecular wire/metal nanoparticle bioconjugates for the photocatalytic production of H2, J. Am. Chem. Soc. 130, 6308–6309 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Helmholtz Zentrum Berlin for Materials and EnergyInstitut für Solare BrennstoffeBerlinGermany

Personalised recommendations