High-Energy Photons for Surface/Interface Analysis and Materials Science

Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 157)

Abstract

In this chapter, a selection of examples is presented in which some of the light sources that were introduced in Chap. 2 are employed for a specific application. The chapter begins with the introduction to synchrotron radiation and related experimentation.

Keywords

Core Level Perturb Angular Correlation Valence Band Maximum Oxygen Evolve Complex Core Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.S. Hasnain, J.R. Helliwell, H. Kamitsubo, Fifty years of synchrotron radiation, J. Synchrotron Radiat. 4, 315 (1997) (editorial)Google Scholar
  2. 2.
    H. Gerischer, Charge transfer processes at the semiconductor–electrolyte interface in connection with problems of catalysis, Surf. Sci. 18, 97–122 (1969)ADSCrossRefGoogle Scholar
  3. 3.
    S.R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes (Plenum, New York, 1980)CrossRefGoogle Scholar
  4. 4.
    K. Skorupska, Ch. Pettenkofer, S. Sadewasser, F. Streicher, W. Haiss, H.J. Lewerenz, Electronic and morphological properties of the electrochemically prepared step bunched Silicon (1 1 1) surface, Phys. Stat. Sol. (b) 248, 361–369 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    W.T. Grubb, Catalysis, electrocatalysis and hydrocarbon fuel cells, Nature 198, 1183(1963)CrossRefGoogle Scholar
  6. 6.
    D. Teschner, R. Schlögl et al., High-pressure X-ray photoelectron spectroscopy of palladium model hydrogenation catalysts. Part 1: Effect of gas ambient and temperature, J. Catal. 230, 186–194 (2005)Google Scholar
  7. 7.
    G. Scherb, J. Zegenhagen, K. Uosaki et al., In-situ X-ray standing-wave analysis of electrodeposited Cu monolayers on GaAs(0 0 1), Phys. Rev. B 58, 10800–10805 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    T. Stempel, A. Munoz, K. Skorupska, M. Lublow, M. Kanis, H.J. Lewerenz, Surface chemistry and nanotopography of step-bunched silicon surfaces: in-system SRPES and SPM investigations, Electrochem. Soc. Trans. 19, 403–407 (2009)Google Scholar
  9. 9.
    D. Teschner, A. Knop-Gericke, R. Schlögl et al., The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation, Science 320, 86–89 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    H.J. Lewerenz, Surface scientific aspects in semiconductor electrochemistry, Chem. Soc. Rev. 26, 239–246 (1997)CrossRefGoogle Scholar
  11. 11.
    K. Skorupska, M. Lublow, M. Kanis, H. Jungblut, H.J. Lewerenz, On the surface chemistry of silicon under reducing conditions: an SRPES investigation, Electrochem. Commun. 7, 1077–1081 (2005)CrossRefGoogle Scholar
  12. 12.
    S.P. Garcia, H. Bao, M.A. Hines, Etchant anisotropy controls the step bunching anisotropy in KOH etching of silicon, Phys. Rev. Lett. 93, 166102 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    M. Lublow, H.J. Lewerenz, Analysis of variable scale surface roughness on Si(1 1 1): a comparative Brewster angle, ellipsometry and atomic force microscopy investigation, Trans. Inst. Metal Finish. 83, 238–247 (2005)CrossRefGoogle Scholar
  14. 14.
    P. Perfetti, C. Quaresima, C. Coluzza, C. Fortunato, G. Margaritondo, Dipole-induced changes of the band discontinuities at the SiO2–Si interface, Phys. Rev. Lett. 57, 2065–2068 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    W. Kohn, Density functional theory: fundamentals and applications, in Highlights of Condensed Matter Theory, ed. by F. Bassani, F. Fumi, M.P. Tosi (North Holland, Amsterdam, 1985), pp. 1–15Google Scholar
  16. 16.
    H.J. Lewerenz, T. Bitzer, M. Gruyters, K. Jacobi, Electrolytic hydrogenation of silicon: a high resolution electron loss spectroscopy investigation, J. Electrochem. Soc. 140, L44–L46 (1993)CrossRefGoogle Scholar
  17. 17.
    K. Jacobi, M. Gruyters, P. Geng, T. Bitzer, M. Aggour, S. Rauscher, H.J. Lewerenz, Hydrogenation of Si(1 1 3) surfaces by (photo)electrochemical treatment, Phys. Rev. B 51, 5437–5440 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    M. Lublow, T. Stempel, K. Skorupska, A.G. Munoz, M. Kanis, H.J. Lewerenz, Morphological and chemical optimization of ex-situ NH4F conditioned Si(1 1 1)-(1 ×1):H, Appl. Phys. Lett. 93, 062112 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    S. Garbarino, A. Pereira, C. Hamel, É. Irissou, M. Chaker, D. Guay, Effect of size on the electrochemical stability of Pt nanoparticles deposited on gold substrate, J. Phys. Chem. C 114, 2980–2988 (2010)CrossRefGoogle Scholar
  20. 20.
    J. Azoulay, Photoelectron spectroscopy-principles and applications, Vacuum 33, 211–213 (1983)CrossRefGoogle Scholar
  21. 21.
    H.J. Lewerenz, K. Schulte, Combined photoelectrochemical conditioning and surface analysis of InP photocathodes: II. Photoelectron spectroscopy, Electrochim. Acta 47, 2639–2651 (2002)Google Scholar
  22. 22.
    M. Alonso, R. Cimino, K. Horn, Surface photovoltage effects in photoemission from metal-GaP(1 1 0) interfaces: importance for band bending evaluation, Phys. Rev. Lett. 64, 1947–1950 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    S.L. Molodtsov, S.V. Halilov, V.D.V. Servedio, M. Richter, C. Laubschat, Solid state effects in photoionization cross sections: Cooper minima in photoemission, Nucl. Instrum. Meth. Phys. Res. A 470, 274–277 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    J. Ristein, W. Stein, L. Ley, Photoelectron yield spectroscopy on negative electron affinity diamond surfaces: a contactless unipolar transport experiment, Diamond Rel. Mat. 7, 626–631 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    L.C. Feldman, J.W. Mayer, Fundamentals of Surface and Thin Film Analysis (Prentice Hall, Upper Saddle River, 1986)Google Scholar
  26. 26.
    K.L. Kliewer, Nonlocal effects in photoemission studies with nonnormally incident light, Phys. Rev. Lett. 33, 900–903 (1974)ADSCrossRefGoogle Scholar
  27. 27.
    M. Perner et al., Optically induced damping of the surface plasmon resonance in gold colloids, Phys. Rev. Lett. 78, 2192–2195 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    K. Hübner, Chemical bond and related properties of SiO2. III. Core-level shifts in SiOx, Phys. Stat. Sol. (a) 42, (1977) 501–509Google Scholar
  29. 29.
    T.D. Thomas, Extra-atomic relaxation energies and the auger parameter, J. Electron. Spectrosc. Rel. Phenom. 20, 117–125 (1980)CrossRefGoogle Scholar
  30. 30.
    P.Y. Timbrell, A.J. Gellman, R.M. Lambert, R.F. Willis, Negative ion resonance selective mode enhancement in the HREEL spectrum of C2H2 on Pd(1 1 1), Surf. Sci. 206, 339–347 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    H. Ibach, Electron Energy Loss Spectrometers (Springer, Berlin, Heidelberg, 1991)Google Scholar
  32. 32.
    H. Ikeda, Y. Nakagawa, M. Toshima, S. Furuta, S. Zaima, Y. Yasuda, Initial oxidation of H-terminated Si(1 1 1) surfaces studied by HREELS, Appl. Surf. Sci. 117,109–113 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    A. Uhlir Jr., Electrolytic shaping of germanium and silicon, Bell System Tech. J. 35, 333–347 (1956)Google Scholar
  34. 34.
    S.A. Campbell, H.J. Lewerenz (eds.), in Semiconductor Micromachining, vols. 1, 2 (Wiley, Chichester, New York, 1998)Google Scholar
  35. 35.
    J. Grzanna, T. Notz, H.J. Lewerenz, Model for current oscillations at the Si/electrolyte contact: extension to spatial resolution, ECS Trans. 16, 173–180 (2008)CrossRefGoogle Scholar
  36. 36.
    J. Grzanna, H. Jungblut, H.J. Lewerenz, A model for electrochemical oscillations at the Si/electrolyte contact Part I. Theoretical development, J. Electroanal. Chem. 486, 181–189 (2000)Google Scholar
  37. 37.
    R. Tenne, V. Marcu, Y. Prior, Photoelectrochemical etching of compound semiconductors: wavelength dependence, Appl. Phys. A 37, 205–209 (1985)ADSCrossRefGoogle Scholar
  38. 38.
    H.J. Lewerenz, H. Jungblut, S. Rauscher, Surface analysis of the electropolishing layer on Si(1 1 1) in ammoniumfluoride solution, Electrochim. Acta 45, 4615–4627 (2000)CrossRefGoogle Scholar
  39. 39.
    S.D. Collins, Etch stops, in Semiconductor Micromachining, ed. by S.A. Campbell, H.J. Lewerenz. Techniques and Industrial Applications, vol. 2, (Wiley, Chichester, New York, 1998)Google Scholar
  40. 40.
    E. Budevski, G. Staikov, W.J. Lorenz, Electrochemical Phase Formation and Growth. An Introduction to the Initial Stages of Metal Deposition (Wiley, New York, 1996)Google Scholar
  41. 41.
    Y. Zhang et al., Underpotential deposition of copper on electrochemically prepared conductive ruthenium oxide surface, Electrochem. Sol. State Lett. 7, C107–C110 (2004)CrossRefGoogle Scholar
  42. 42.
    K.J. Bachmann, Wet and dry etching: a comparison in the context of solid state electronics applications, in Semiconductor Micromachining, ed. by S.A. Campbell, H.J. Lewerenz. Techniques and Industrial Applications, vol. 2, (Wiley, Chichester, New York, 1998)Google Scholar
  43. 43.
    O.J. Glembocki, R.E. Stahlbush, M. Tomkiewicz, Bias-dependent etching of silicon in aqueous KOH, J. Electrochem. Soc. 132, 145–151 (1985)CrossRefGoogle Scholar
  44. 44.
    A.G. Cullis, L.T. Canham, Visible light emission due to quantum size effects in highly porous crystalline silicon, Nature 353, 335–337 (1991)ADSCrossRefGoogle Scholar
  45. 45.
    H.J. Lewerenz, J. Jakubowicz, H. Jungblut, Metastable stage of porous silicon formation: the role of h-terminated low index faces, Electrochem. Commun. 6, 838–842 (2004)CrossRefGoogle Scholar
  46. 46.
    D.J. Monk, D.S. Soane, R.T. Howe, A review of the chemical reaction mechanism and kinetics for hydrofluoric acid etching of silicon dioxide for surface micromachining applications, Thin Solid Films 232, 1–12 (1993)ADSCrossRefGoogle Scholar
  47. 47.
    P. Allongue, V. Costa Kieling, H. Gerischer, Etching of silicon in NaOH solutions. II: Electrochemical studies of n-Si(1 1 1) and (1 0 0) and mechanism of the dissolution, J. Electrochem. Soc. 140, 1018–1026 (1993)Google Scholar
  48. 48.
    T. Baum, D. Schiffrin, Kinetic isotopic effects in the anisotropic etching of p-Si(1 0 0) in alkaline solutions, J. Electroanal. Chem. 436, 239–244 (1997)CrossRefGoogle Scholar
  49. 49.
    H.J. Lewerenz, M. Aggour, C. Murrell, M. Kanis, H. Jungblut, J. Jakubowicz, P.A. Cox, S.A. Campbell, P. Hoffmann, D. Schmeißer, Initial stages of structure formation on silicon electrodes investigated by photoelectron spectroscopy using synchrotron radiation and in-situ atomic force microscopy, J. Electrochem. Soc. 150, E185–E189 (2003)CrossRefGoogle Scholar
  50. 50.
    P. Allongue, V. Kieling, H. Gerischer, Etching mechanism and atomic structure of H–Si(1 1 1) surfaces prepared in NH4F, Electrochim. Acta. 40, 1353–1360 (1995)CrossRefGoogle Scholar
  51. 51.
    H. Jungblut, J. Jakubowicz, H.J. Lewerenz, Observation of a transitory structure during porous silicon formation: stability of Si (1 ×1) H-terminated surfaces and facets, Surf. Sci. 597, 93–101 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    K. Siegbahn, Electron spectroscopy for atoms, molecules, and condensed matter, Rev. Mod. Phys. 54, 709–728 (1982)ADSCrossRefGoogle Scholar
  53. 53.
    E. Foca, J. Carstensen, H. Föll, Modelling electrochemical current and potential oscillations at the Si electrode, J. Electroanal. Chem. 603, 175–202 (2007)CrossRefGoogle Scholar
  54. 54.
    R.T. Sanderson, Chemical principles revisited: principles of electronegativity – Part I. General nature, J. Chem. Educat. 65, 112–118 (1988)Google Scholar
  55. 55.
    H.J. Lewerenz, in Tailoring of Interfaces for the Electrochemical Conversion of Solar Energy, Advances in Electrochemical Science and Engineering, vol. 12, ed. by R. Alkire, D. Kolb, P. Ross (Wiley, New York, 2010), pp.61–181Google Scholar
  56. 56.
    A. Dmol, Density Functional Theory Program with the Insight Molecular Modelling Package (MSI, San Diego, CA, 1996)Google Scholar
  57. 57.
    H.J. Lewerenz, J. Stumper, L.M. Peter, Deconvolution of charge injection steps in quantum yield multiplication on silicon, Phys. Rev. Lett. 61, 1989–1991 (1988)ADSCrossRefGoogle Scholar
  58. 58.
    J. Stumper, H.J. Lewerenz, C. Pettenkofer, X-ray photoemission spectroscopy analysis of Si(1 1 1) under photocurrent doubling conditions, Phys. Rev. B 41, 1592–1597 (1990)ADSCrossRefGoogle Scholar
  59. 59.
    H.J. Lewerenz, M. Aggour, C. Murrell, J. Jakubowicz, M. Kanis, S.A. Campbell, P.A. Cox, P. Hoffmann, H. Jungblut, D. Schmeißer, High resolution surface analysis of Si roughening in dilute ammonium fluoride solution, J. Electroanal. Chem. 540, 3–6 (2003)CrossRefGoogle Scholar
  60. 60.
    Y. Gassenbauer, A. Knop-Gericke, R. Schlögl et al., Surface potential changes of semiconducting oxides monitored by high-pressure photoelectron spectroscopy: Importance of the electron concentration at the surface, Sol. State Ion. 117, 3123–3127 (2006)CrossRefGoogle Scholar
  61. 61.
    H.J. Lewerenz, J. Jakubowicz, H. Jungblut, Nascent phase of porous silicon, Electrochem. Commun. 6, 1243–1248 (2004)CrossRefGoogle Scholar
  62. 62.
    K. Skorupska, T. Vo-Dinh, H.J. Lewerenz, Scanning probe characterization of enzymes deposited onto step-bunched silicon nanostructures, Phys. Scripta 79, 065801 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    H.J. Lewerenz, Enzyme–semiconductor interactions: routes from fundamental aspects to photoactive devices, Phys. Stat. Sol. (b) 245, 1884–1898 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    K. Skorupska, J. Golbeck, P. Ugarte-Berzel, M. Lublow, H.J. Lewerenz, Immobilization of photosystem II on step-bunched silicon: a combined AFM and Brewster angle reflectometry investigation, unpublished resultsGoogle Scholar
  65. 65.
    K. Skorupska, M. Lublow, M. Kanis, H. Jungblut, H.J. Lewerenz, Electrochemical preparation of a stable accumulation layer on Si: a synchrotron radiation photoelectron spectroscopy study, Appl. Phys. Lett. 87, 262101 (2005)ADSCrossRefGoogle Scholar
  66. 66.
    D.K. Avasthi, Developments in nuclear techniques for hydrogen depth profiling, Bull. Mater. Sci. 19, 4–14 (1996)Google Scholar
  67. 67.
    R. Rizk, P. de Mierry, D. Ballutaud, M. Aucouturier, D. Mathiot, Hydrogen diffusion and passivation processes in p- and n-type silicon, Phys. Rev. B. 44, 6141–6151 (1991)ADSCrossRefGoogle Scholar
  68. 68.
    K.v. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall, Phys. Rev. Lett. 45, 494–497 (1980)Google Scholar
  69. 69.
    D.C. Tsui, H.L. Störmer, A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48, 1559–1562 (1982)ADSCrossRefGoogle Scholar
  70. 70.
    S.A. Wolf et al., Spintronics: a spin-based electronics vision for the future, Science 294, 1488–1495 (2001)ADSCrossRefGoogle Scholar
  71. 71.
    P.P. Deimel, in Semiconductor Micromachining, ed. by S.A. Campbell, H.J. Lewerenz. Techniques and Industrial Applications, vol. 2 (Wiley, New York, 1998)Google Scholar
  72. 72.
    H.J. Lewerenz, H. Jungblut, Photovoltaik; Grundlagen und Anwendungen (Springer, Heidelberg, 1995)CrossRefGoogle Scholar
  73. 73.
    J. Zhao, A. Wang, M.A. Green, 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates, Progr. Photovolt. Res. Appl. 7, 471–474 (1999)Google Scholar
  74. 74.
    B. Wu, Photomask plasma etching: a review, J. Vac. Sci. Technol. B 24, 1–15 (2006)MATHCrossRefGoogle Scholar
  75. 75.
    W.P. Maszara, Silicon-on-insulator by wafer bonding: a review, J. Electrochem. Soc. 138, 341–347 (1991)CrossRefGoogle Scholar
  76. 76.
    L. Smith, A. Söderbärg, Electrochemical etch stop obtained by accumulation of free carriers without P–N junction, J. Electrochem. Soc. 140, 271–275 (1993)CrossRefGoogle Scholar
  77. 77.
    E.W. Becker, W. Ehrfeld, P. Hagman, A. Maner, D. Münchmeyer, Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process), Microelectron. Eng. 4, 35–56 (1986)CrossRefGoogle Scholar
  78. 78.
    J. Vollmer, H. Hein, W. Menz, F. Walter, Bistable fluidic elements in LIGA technique for flow control in fluidic microactuators, Sensors Actuat. A 43, 330–334 (1994)CrossRefGoogle Scholar
  79. 79.
    M. Aggour, K. Skorupska, T. Stempel Perreira, H. Jungblut, J. Grzanna, H.J. Lewerenz, Photoactive silicon-based nanostructure by self-organized electrochemical processing, J. Electrochem. Soc. 154, H794–H797 (2007)CrossRefGoogle Scholar
  80. 80.
    H.J. Lewerenz, T. Bitzer, Electrolytic hydrogenation of silicon, J. Electrochem. Soc. 139, L21–L23 (1992)CrossRefGoogle Scholar
  81. 81.
    J.H. Ye, K. Kaji, K. Itaya, Atomic-scale elucidation of the anisotropic etching of (1 1 0) n-Si in aqueous NH4F: studies by in-situ scanning tunneling microscopy, J. Electrochem. Soc. 143, 4012–4019 (1996)CrossRefGoogle Scholar
  82. 82.
    H.W.B. Skinner, The soft X-ray spectroscopy of solids. I. K- and L-emission spectra from elements of the first two groups, Philos. Trans. Roy. Soc. Lon., Ser. A 239, 95–134 (1940)Google Scholar
  83. 83.
    S. Eisebitt, W. Eberhardt, Band structure information and resonant inelastic soft X-ray scattering in broad band solids, J. Electron. Spectr. Rel. Phen. 110–111, 335–358 (2000)CrossRefGoogle Scholar
  84. 84.
    H.J. Lewerenz, H. Goslowsky, K.-D. Husemann, S. Fiechter, Efficient solar energy conversion with CuInS2, Nature 321, 687–688 (1986)ADSCrossRefGoogle Scholar
  85. 85.
    S. Menezes, H.J. Lewerenz, K.J. Bachmann, Efficient and stable solar cell by interfacial film formation, Nature 305, 615–616 (1983)ADSCrossRefGoogle Scholar
  86. 86.
    R. Scheer, T. Walther, H.W. Schock, M.L. Fearheiley, H.J. Lewerenz, Development and characterization of a CuInS2 based solar cell with 10.2% efficiency, Appl. Phys. Lett. 63, 3294–3296 (1993)Google Scholar
  87. 87.
    C.H. Fischer, H.J. Lewerenz, M.C. Lux-Steiner, W. Gudat, F. Karg et al., X-rays shed light on the “Hidden” interfaces of solar cells, Bessy Highlights 2003, 15–16 (2004)Google Scholar
  88. 88.
    J.E. Jaffe, A. Zunger, Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaSs, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2, Phys. Rev. B 28, 5822–5847 (1983)ADSCrossRefGoogle Scholar
  89. 89.
    T. Wilhelm, B. Berenguier, M. Aggour, M. Kanis, H.J. Lewerenz, Efficient CuInS2 (CIS) solar cells by photoelectrochemical conditioning, Compt. Rendus Chim. 9, 294–300 (2006)CrossRefGoogle Scholar
  90. 90.
    P. Glatzel et al., The electronic structure of Mn in oxides, coordination complexes, and the oxygen-evolving complex of photosystem II studied by resonant inelastic X-ray scattering, J. Am. Chem. Soc. 126, 9946–9959 (2004)CrossRefGoogle Scholar
  91. 91.
    M. Brüßler, H. Metzner, K.-D. Husemann, H.J. Lewerenz, Phase identification in the Cu–In–S system by perturbed angular correlations, Phys. Rev. B 38, 9268–9271 (1988)ADSCrossRefGoogle Scholar
  92. 92.
    H. Metzner, M. Brüssler, K.-D. Husemann, H.J. Lewerenz, Phase identification in the Cu–In–S system II: a combined study by perturbed angular correlation and X-ray analysis, Phys. Rev. B 44, 11614–11623 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Helmholtz Zentrum Berlin for Materials and EnergyInstitut für Solare BrennstoffeBerlinGermany

Personalised recommendations