Skip to main content

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 6990))

Abstract

Scientific progress depends increasingly on collaborative efforts that involve exchange of data and re-analysis of previously recorded data. A major obstacle to fully exploit the scientific potential of experimental data is the effort it takes to access both data and metadata for application of specific analysis methods, for exchange with collaborators, or for further analysis some time after the initial study was completed. To cope with these challenges and to make data analysis, re-analysis, and data sharing efficient, data together with metadata should be managed and accessed in a unified and reproducible way, so that the researcher can concentrate on the scientific questions rather than on problems of data management. We present a data management system for electrophysiological data based on well established relational database technology and domain-specific data models, together with mechanisms to account for the heterogeneity of electrophysiological data. This approach provides interfaces to analysis tools and programming languages that are commonly used in neurophysiology. It thus will enable researchers to seamlessly integrate data access into their daily laboratory workflow and efficiently perform management and selection of data in a systematic and largely automatized fashion for data sharing and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amari, S.-I., Beltrame, F., Bjaalie, J.G., Dalkara, T., De Schutter, E., Egan, G.F., Goddard, N.H., Gonzalez, C., Grillner, S., Herz, A., Hoffmann, K.-P., Jaaskelainen, I., Koslow, S.H., Lee, S.-Y., Matthiessen, L., Miller, P.L., Da Silva, F.M., Novak, M., Ravindranath, V., Ritz, R., Ruotsalainen, U., Sebestra, V., Subramaniam, S., Tang, Y., Toga, A.W., Usui, S., Van Pelt, J., Verschure, P., Willshaw, D., Wrobel, A.: Neuroinformatics: the integration of shared databases and tools towards integrative neuroscience. Journal of Integrative Neuroscience 1(2), 117–128 (2002)

    Article  Google Scholar 

  2. Cannon, R.C., Gewaltig, M.-O., Gleeson, P., Bhalla, U.S., Cornelis, H., Hines, M.L., Howell, F.W., Muller, E., Stiles, J.R., Wils, S., De Schutter, E.: Interoperability of Neuroscience Modeling Software: Current Status and Future Directions. Neuroinformatics 5(2), 127–138 (2007)

    Article  Google Scholar 

  3. Codd, E.F.: A relational model of data for large shared data banks. 1970. M.D. Computing: Computers in Medical Practice 15(3), 162–166 (1970)

    MATH  Google Scholar 

  4. Garcia, S., Fourcaud-Trocmé, N.: OpenElectrophy: An Electrophysiological Data- and Analysis-Sharing Framework. Frontiers in neuroinformatics 3(May) 14 (2009)

    Article  Google Scholar 

  5. Gardner, D., Knuth, K.H., Abato, M., Erde, S.M., White, T., DeBellis, R., Gardner, E.P.: Common data model for neuroscience data and data model exchange. J. Am. Med. Inform. Assoc. 8(1), 17–33 (2001)

    Article  Google Scholar 

  6. Gelbart, W.M., Crosby, M., Matthews, B., Rindone, W.P., Chillemi, J., Russo Twombly, S., Emmert, D., Ashburner, M., Drysdale, R.A., Whitfield, E., Millburn, G.H., de Grey, A., Kaufman, T., Matthews, K., Gilbert, D., Strelets, V., Tolstoshev, C.: Flybase: a drosophila database. the flybase consortium. Nucleic Acids Res. 25(1), 63–66 (1997)

    Article  Google Scholar 

  7. Gibson, F., Austin, J., Ingram, C., Fletcher, M., Jackson, T., Jessop, M., Knowles, A., Liang, B., Lord, G., Pitsilis, P., Periorellis, P., Simonotto, J., Watson, P., Smith, L.: The carmen virtual laboratory: Web-based paradigms for collaboration in neurophysiology. In: 6th International Meeting on Substrate-Integrated Microelectrodes 2008 (2008)

    Google Scholar 

  8. Grewe, J., Wachtler, T., Benda, J.: odML format and terminologies for automated handling of (meta)data. In: Front. Neurosci. Conference Abstract: Neuroinformatics 2010 (2010)

    Google Scholar 

  9. Gupta, A., Bug, W., Marenco, L., Qian, X., Condit, C., Rangarajan, A., Müller, H.M., Miller, P.L., Sanders, B., Grethe, J.S., Astakhov, V., Shepherd, G., Sternberg, P.W., Martone, M.E.: Federated access to heterogeneous information resources in the neuroscience information framework (NIF). Neuroinformatics 6(3), 205–217 (2008)

    Article  Google Scholar 

  10. Herz, A.V.M., Meier, R., Nawrot, M.P., Schiegel, W., Zito, T.: G-Node: an integrated tool-sharing platform to support cellular and systems neurophysiology in the age of global neuroinformatics. Neural Netw. 21(8), 1070–1075 (2008)

    Article  Google Scholar 

  11. Hines, M.L., Davison, A.P., Muller, E.: NEURON and Python. Frontiers in neuroinformatics 3(January), 1 (2009)

    Google Scholar 

  12. Ljungquist, B., Petersson, P., Schouenborg, J., Johansson, A.J., Garwicz, M.: A novel framework for storage, analysis and integration through mediation of large-scale electrophysiological data. In: 5th International IEEE/EMBS Conference on Neural Engineering (2011)

    Google Scholar 

  13. Paradis, E., Claude, J., Strimmer, K.: APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20(2), 289–290 (2004)

    Article  Google Scholar 

  14. Stoesser, G., Sterk, P., Tuli, M.A., Stoehr, P.J., Cameron, G.N.: The embl nucleotide sequence database. Nucleic Acids Res. 25(1), 7–14 (1997)

    Article  Google Scholar 

  15. Teeters, J.L., Harris, K.D., Jarrod Millman, K., Olshausen, B.A., Sommer, F.T.: Data sharing for computational neuroscience. Neuroinformatics 6(1), 47–55 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rautenberg, P.L., Sobolev, A., Herz, A.V.M., Wachtler, T. (2011). A Database System for Electrophysiological Data. In: Hameurlain, A., Küng, J., Wagner, R., Böhm, C., Eder, J., Plant, C. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems IV. Lecture Notes in Computer Science, vol 6990. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23740-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23740-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23739-3

  • Online ISBN: 978-3-642-23740-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics