Mining Preferences from OLAP Query Logs for Proactive Personalization

  • Julien Aligon
  • Matteo Golfarelli
  • Patrick Marcel
  • Stefano Rizzi
  • Elisa Turricchia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6909)


The goal of personalization is to deliver information that is relevant to an individual or a group of individuals in the most appropriate format and layout. In the OLAP context personalization is quite beneficial, because queries can be very complex and they may return huge amounts of data. Aimed at making the user’s experience with OLAP as plain as possible, in this paper we propose a proactive approach that couples an MDX-based language for expressing OLAP preferences to a mining technique for automatically deriving preferences. First, the log of past MDX queries issued by that user is mined to extract a set of association rules that relate sets of frequent query fragments; then, given a specific query, a subset of pertinent and effective rules is selected; finally, the selected rules are translated into a preference that is used to annotate the user’s query. A set of experimental results proves the effectiveness and efficiency of our approach.


Association Rule Mining Association Rule Mining Step Proactive Personalization Current Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Giacometti, A., Marcel, P., Negre, E.: Recommending multidimensional queries. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 453–466. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H., Laurent, D.: A personalization framework for OLAP queries. In: Proc. DOLAP, Bremen, Germany, pp. 9–18 (2005)Google Scholar
  3. 3.
    Golfarelli, M., Rizzi, S., Biondi, P.: myOLAP: An approach to express and evaluate OLAP preferences. In: IEEE TKDE (to appear 2011)Google Scholar
  4. 4.
    Jerbi, H., Ravat, F., Teste, O., Zurfluh, G.: Management of context-aware preferences in multidimensional databases. In: Proc. ICDIM, London, UK, pp. 669–675 (2008)Google Scholar
  5. 5.
    Jerbi, H., Ravat, F., Teste, O., Zurfluh, G.: Applying recommendation technology in OLAP systems. In: Filipe, J., Cordeiro, J. (eds.) ICEIS. LNBIP, vol. 24, pp. 220–233. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Biondi, P., Golfarelli, M., Rizzi, S.: Preference-based datacube analysis with myOLAP. In: Proc. ICDE (to appear 2011)Google Scholar
  7. 7.
    Stefanidis, K., Drosou, M., Pitoura, E.: ”You May Also Like” results in relational databases. In: Proc. PersDB, Lyon, France (2009)Google Scholar
  8. 8.
    Giacometti, A., Marcel, P., Negre, E., Soulet, A.: Query recommendations for OLAP discovery driven analysis. In: IJDWM (to appear 2011)Google Scholar
  9. 9.
    Chatzopoulou, G., Eirinaki, M., Polyzotis, N.: Query recommendations for interactive database exploration. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol. 5566, pp. 3–18. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Akbarnejad, J., Chatzopoulou, G., Eirinaki, M., Koshy, S., Mittal, S., On, D., Polyzotis, N., Varman, J.S.V.: SQL QueRIE recommendations. PVLDB 3(2), 1597–1600 (2010)Google Scholar
  11. 11.
    Khoussainova, N., Kwon, Y., Balazinska, M., Suciu, D.: Snipsuggest: Context-aware autocompletion for SQL. PVLDB 4(1), 22–33 (2010)Google Scholar
  12. 12.
    Veloso, A., de Almeida, H.M., Gonçalves, M.A., Meira Jr, W.: Learning to rank at query-time using association rules. In: Proc. SIGIR, Singapore, pp. 267–274 (2008).Google Scholar
  13. 13.
    Holland, S., Ester, M., Kießling, W.: Preference mining: A novel approach on mining user preferences for personalized applications. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 204–216. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Mobasher, B.: Data mining for web personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web, pp. 90–135. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Microsoft: MDX reference (2009),
  16. 16.
    Sá, C., Soares, C., Jorge, A., Azevedo, P., Costa, J.: Mining association rules for label ranking. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II. LNCS, vol. 6635, pp. 432–443. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on multiple class-association rules. In: Proc. ICDM, pp. 369–376 (2001)Google Scholar
  18. 18.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proc. VLDB, pp. 487–499. Santiago de Chile, Chile (1994)Google Scholar
  19. 19.
    Sarawagi, S.: Explaining differences in multidimensional aggregates. In: Proc. VLDB, Edinburgh, Scotland, pp. 42–53 (1999)Google Scholar
  20. 20.
    Sarawagi, S.: I3: Intelligent, interactive inspection of cubes (2009),
  21. 21.
    Minnesota Population Center: Integrated public use microdata series (2008),

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Julien Aligon
    • 1
  • Matteo Golfarelli
    • 2
  • Patrick Marcel
    • 1
  • Stefano Rizzi
    • 2
  • Elisa Turricchia
    • 2
  1. 1.Laboratoire d’InformatiqueUniversité François Rabelais ToursFrance
  2. 2.DEISUniversity of BolognaItaly

Personalised recommendations