Rewriting Fuzzy Queries Using Imprecise Views

  • Hélène Jaudoin
  • Olivier Pivert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6909)


This paper proposes an approach to the tolerant rewriting of queries in terms of views when the views and the queries may involve fuzzy value constraints in the context of a Local-As-View mediation system. These constraints describe attribute values as a set of elements attached with a degree in \([0,\:1]\) that expresses the plausibility attached to a given element, i.e., attribute values more or less plausible/typical in the views, while in the queries, they denotes preferences, i.e., more or less desired values. The problem of rewriting queries is formalized in the setting of the description logic \({\cal FL}_0\) extended to fuzzy value constraints. We propose an algorithm of gradual and structural subsumption for this extended logic, that plays a key role in the query rewriting algorithm. Finally, we characterize the tolerant query rewriting forms and propose an algorithm to compute them.


Data Integration System LAV Approach Fuzzy preferences Imprecise views 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized views. In: PODS 1998, pp. 254–263 (1998)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Univ. Press, Cambridge (2003)MATHGoogle Scholar
  3. 3.
    Bobillo, F., Delgado, M., Gómez-Romero, J.: A crisp representation for fuzzy SHOIN with fuzzy nominals and general concept inclusions. In: URSW I pp. 174–188 (2008)Google Scholar
  4. 4.
    Borgida, A., Patel-Schneider, P.F.: A semantics and complete algorithm for subsumption in the classic description logic. JAIR 1, 277–308 (1994)MATHGoogle Scholar
  5. 5.
    Dalvi, N., Suciu, D.: Answering queries from statistics and probabilistic views. In: VLDB, pp. 805–816 (2005)Google Scholar
  6. 6.
    Das Sarma, A., Dong, X., Halevy, A.: Bootstrapping pay-as-you-go data integration systems. In: SIGMOD, pp. 861–874. ACM, New York (2008)CrossRefGoogle Scholar
  7. 7.
    Dong, X., Halevy, A., Yu, C.: Data integration with uncertainty. In: VLDB, pp. 687–698 (2007)Google Scholar
  8. 8.
    Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)CrossRefMATHGoogle Scholar
  9. 9.
    Dubois, D., Prade, H.: Fundamentals of fuzzy sets. The Handbooks of Fuzzy Sets, vol. 7. Kluwer Academic Pub., Netherlands (2000)MATHGoogle Scholar
  10. 10.
    Fagin, R.: Combining fuzzy information from multiple systems. In: PODS, pp. 216–226 (1996)Google Scholar
  11. 11.
    Halevy, A.: Answering queries using views: A survey. VLDB Journal 10(4), 270–294 (2001)CrossRefMATHGoogle Scholar
  12. 12.
    Hayne, S., Ram, S.: Multi-user view integration system: An expert system for view integration. In: ICDE, Washington, DC, USA, pp. 402–409 (1990)Google Scholar
  13. 13.
    Jaudoin, H., Flouvat, F., Petit, J.M., Toumani, F.: Towards a scalable query rewriting algorithm in presence of value constraints. In: Spaccapietra, S. (ed.) JODS XII. LNCS, vol. 5480, pp. 37–65. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Kavvadias, D.J., Stavropoulos, E.C.: An efficient algorithm for the transversal hypergraph generation. Journal of Graph Algorithms and Applications 9 (2005)Google Scholar
  15. 15.
    Zadeh, L.A.: Fuzzy sets. Information and control 8(3), 338–353 (1965)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Magnani, M., Rizopoulos, N., Brien, P.M.C., Montesi, D.: Schema integration based on uncertain semantic mappings. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 31–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Mailis, T., Stoilos, G., Stamou, G.: Expressive reasoning with horn rules and fuzzy description logics. In: Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 43–57. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. DMKD 1(3), 241–258 (1997)Google Scholar
  19. 19.
    Nottelmann, H., Straccia, U.: splmap: A probabilistic approach to schema matching. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 81–95. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Yager, R.R.: Veristic Variables and Approximate Reasoning for Intelligent Semantic Web Systems. Studies in Fuzziness and Soft Computing, Preferences and Decisions Models and Applications 217, 231–249 (2007)Google Scholar
  21. 21.
    Rossazza, J.P.: Utilisation de hiérarchies de classes floues pour la représentation de connaissances imprécises et sujettes à exceptions: le système ”SORCIER”. Ph.D. thesis, Univ. Paul Sabatier de Toulouse (1990)Google Scholar
  22. 22.
    Schaerf, A.: Reasoning with individuals in concept languages. Data & Knowledge Engineering 13(2), 141–176 (1994)CrossRefGoogle Scholar
  23. 23.
    Straccia, U.: Reasoning within fuzzy description logics. JAIR 14 (2001)Google Scholar
  24. 24.
    Tresp, C., Molitor, M.: A description logic for vague knowledge. In: ECAI, pp. 361–365 (1998)Google Scholar
  25. 25.
    Wimmers, E., Haas, H., Roth, X., Braendli, X.: Using fagin’s algorithm for merging ranked results in multimedia distributed systems. In: Proc. of IFCIS 1999 (1999)Google Scholar
  26. 26.
    Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hélène Jaudoin
    • 1
  • Olivier Pivert
    • 1
  1. 1.Irisa - Enssat, University of Rennes 1 Technopole AnticipaLannion CedexFrance

Personalised recommendations