MOLAP Cube Based on Parallel Scan Algorithm

  • Krzysztof Kaczmarski
  • Tomasz Rudny
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6909)


This paper describes a new approach to multidimensional OLAP cubes implementation by employing a massively parallel scan operation. This task requires dedicated data structures, setting up and querying algorithms. A prototype implementation is evaluated in aspects of robustness and scalability for both time and storage.


Time Complexity Memory Complexity Hash Code Graphical Device Cube Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iverson, K.E.: APL: A Programming Language. John Wiley & Sons, Chichester (1962)zbMATHGoogle Scholar
  2. 2.
    Blelloch, G.E.: Prefix sums and their applications. In: Sythesis of parallel algorithms, pp. 35–60. Morgan Kaufmann Publishers Inc., San Francisco (1990)Google Scholar
  3. 3.
    Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for GPU computing. In: Segal, M., Aila, T. (eds.) Graphics Hardware, pp. 97–106. Eurographics Association, San Diego (2007)Google Scholar
  4. 4.
    Sengupta, S., Harris, M., Garland, M.: Efficient parallel scan algorithms for GPUs. Tech. Rep. NVR-2008-003, NVIDIA Corporation (December 2008)Google Scholar
  5. 5.
    CUDA Data Parallel Primitives Library (2011),
  6. 6.
    Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP (On-Line Analytical Processing) to User-Analysts: An IT Mandate. E. F. Codd and Associates (1993)Google Scholar
  7. 7.
    Kennedy, D.: The reality of real-time OLAP. tech. rep., Microsoft Corporation, Microsoft SQL Server 2000 Analysis Service (February 2003)Google Scholar
  8. 8.
    IBM Cognos TM1, high-performance enterprise planning software for budgeting, forecasting and analysis. IBM Corporation (2011),
  9. 9.
    Palo GPU Accelerator: whitepaper, tech. rep., Jedox (2011),
  10. 10.
    Kaczmarski, K.: Comparing GPU and CPU in OLAP cubes creation. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 308–319. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Kaser, O.: Compressing molap arrays by attribute-value reordering: An experimental analysis. tech. rep., Dept. (2002)Google Scholar
  12. 12.
    Fu, L., Hammer, J.: Cubist: A new algorithm for improving the performance of ad-hoc OLAP queries. In: DOLAP, pp. 72–79 (2000)Google Scholar
  13. 13.
    Wang, W., Lu, H., Feng, J., Yu, J.X.: Condensed cube: An efficient approach to reducing data cube size. In: ICDE, pp. 155–165. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  14. 14.
    Feng, J., Fang, Q., Ding, H.: Prefixcube: prefix-sharing condensed data cube. In: Song, I.-Y., Davis, K.C. (eds.) DOLAP, pp. 38–47. ACM, New York (2004)Google Scholar
  15. 15.
    Li, X., Han, J., Gonzalez, H.: High-dimensional OLAP: A minimal cubing approach. In: Nascimento, M.A., Zsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.) VLDB, pp. 528–539. Morgan Kaufmann, San Francisco (2004)Google Scholar
  16. 16.
    Garcia, V., Nielsen, F.: Searching high-dimensional neighbours: Cpu-based tailored data-structures versus gpu-based brute-force method. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2009. LNCS, vol. 5496, pp. 425–436. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Krzysztof Kaczmarski
    • 1
  • Tomasz Rudny
    • 1
  1. 1.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations