Adapting Decision Support to Business Requirements through Data Interpretation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6874)


Decision support shows often a gap between the problems in terms of business knowledge and the answers restricted to a final decision result. We present a decisional framework for automating business procedures, developed through with the administration, that allows managing and formalizing extra information besides the mere decisional knowledge. This information can be useful to tune the knowledge model according to operational data, or to better exploit the decision result in the subsequent stages of a collaborative workflow.


Decision support Data interpretation Information retrieval 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McCorduck, P.: Machines Who Think, 2nd edn. A. K. Peters, Wellesley (2008)Google Scholar
  2. 2.
    Redman, T.: The impact of poor data quality on the typical enterprise. Communications of the ACM (1998)Google Scholar
  3. 3.
    Tamisier, T., Didry, Y., Parisot, O., Feltz, F.: A Collaborative Reasoning Maintenance System for a Reliable Application of Legislations. In: Luo, Y. (ed.) CDVE 2009. LNCS, vol. 5738, pp. 313–316. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Laird, J., et al.: SOAR: an architecture for general intelligence. Artificial Intelligence 33(1) (1987)Google Scholar
  5. 5.
    Laird, J., et al.: The Soar User’s Manual,
  6. 6.
  7. 7.
  8. 8.
    Kumar, V., et al.: Introduction to Data Mining, ch. 8. Addison-Wesley, Reading (2006)Google Scholar
  9. 9.
    Candillier, L.: Contextualisation, Visualisation et Evaluation en Apprentissage non Supervisé. PhD thesis, University of Lille-3, France (2006)Google Scholar
  10. 10.
    Lakshminarayan, K., Harp, S., Goldman, R., Samad, T.: Imputation of missing data using machine learning techniques,
  11. 11.
    Wang, Y., Xing, H.-J.: Knowledge Discovery & Integration Based on a Novel Neural Network Ensemble Model. In: Proc. of Int. Conf. on Semantics, Knowledge & Grid (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Centre de Rercherche Public - Gabriel LippmannBelvauxLuxembourg

Personalised recommendations