Skip to main content

Adapting Decision Support to Business Requirements through Data Interpretation

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 6874)

Abstract

Decision support shows often a gap between the problems in terms of business knowledge and the answers restricted to a final decision result. We present a decisional framework for automating business procedures, developed through with the administration, that allows managing and formalizing extra information besides the mere decisional knowledge. This information can be useful to tune the knowledge model according to operational data, or to better exploit the decision result in the subsequent stages of a collaborative workflow.

Keywords

  • Decision support
  • Data interpretation
  • Information retrieval

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-23734-8_13
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-23734-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCorduck, P.: Machines Who Think, 2nd edn. A. K. Peters, Wellesley (2008)

    Google Scholar 

  2. Redman, T.: The impact of poor data quality on the typical enterprise. Communications of the ACM (1998)

    Google Scholar 

  3. Tamisier, T., Didry, Y., Parisot, O., Feltz, F.: A Collaborative Reasoning Maintenance System for a Reliable Application of Legislations. In: Luo, Y. (ed.) CDVE 2009. LNCS, vol. 5738, pp. 313–316. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  4. Laird, J., et al.: SOAR: an architecture for general intelligence. Artificial Intelligence 33(1) (1987)

    Google Scholar 

  5. Laird, J., et al.: The Soar User’s Manual, http://ai.eecs.umich.edu/soar

  6. Weka, http://www.cs.waikato.ac.nz/ml/weka

  7. Encog, http://www.heatonresearch.com/encog

  8. Kumar, V., et al.: Introduction to Data Mining, ch. 8. Addison-Wesley, Reading (2006)

    Google Scholar 

  9. Candillier, L.: Contextualisation, Visualisation et Evaluation en Apprentissage non Supervisé. PhD thesis, University of Lille-3, France (2006)

    Google Scholar 

  10. Lakshminarayan, K., Harp, S., Goldman, R., Samad, T.: Imputation of missing data using machine learning techniques, http://www.aaai.org/Library/KDD/1996/kdd96-023.php

  11. Wang, Y., Xing, H.-J.: Knowledge Discovery & Integration Based on a Novel Neural Network Ensemble Model. In: Proc. of Int. Conf. on Semantics, Knowledge & Grid (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tamisier, T., Parisot, O., Didry, Y., Wax, J., Feltz, F. (2011). Adapting Decision Support to Business Requirements through Data Interpretation. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2011. Lecture Notes in Computer Science, vol 6874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23734-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23734-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23733-1

  • Online ISBN: 978-3-642-23734-8

  • eBook Packages: Computer ScienceComputer Science (R0)