From Classical to Quantum Fields

Part of the Lecture Notes in Physics book series (LNP, volume 839)


We have learned how the consistency of quantum mechanics with special relativity forces us to abandon the single-particle interpretation of the wave function. Instead we have to consider quantum fields whose elementary excitations are associated with particle states, as we will see below. In this chapter we study the basics of field quantization using both the canonical formalism and the path integral method.


Poisson Bracket Path Integral Vacuum Energy Lorentz Transformation Classical Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wet. 60, 793 (1948)Google Scholar
  2. 2.
    Plunien, G., Müller, B., Greiner, W.: The Casimir effect. Phys. Rept. 134, 87 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    Milton, K.A.: The Casimir effect: recent controversies and progress. J. Phys. A 37, R209 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Lamoreaux, S.K.: The Casimir force: background, experiments, and applications. Rep. Prog. Phys. 68, 201 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)zbMATHGoogle Scholar
  6. 6.
    Sparnaay, M.J.: Measurement of attractive forces between flat plates. Physica 24, 751 (1958)ADSCrossRefGoogle Scholar
  7. 7.
    Feynman, R.P.: The principle of least action in quantum mechanics. PhD Thesis (1942)Google Scholar
  8. 8.
    Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. (edition emended by Steyer, D.F.) Dover, New York (2010)Google Scholar
  10. 10.
    Schulman, L.S.: Techniques and Applications of Path Integration. Dover, New York (2005)zbMATHGoogle Scholar
  11. 11.
    Kleinert, H.: Path Integrals in Quantum Mechanics, Statistical & Polymer Physics & Financial Markets. World Scientific, Singapore (2004)Google Scholar
  12. 12.
    Zinn-Justin, J.: Path Integrals in Quantum Mechanics. Oxford University Press, Oxford (2009)Google Scholar
  13. 13.
    Dirac, P.A.M.: The Lagrangian in Quantum Mechanics. Phys. Z. Sowjetunion 3, 64 (1933)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Theory Unit, Physics DepartmentCERNGenevaSwitzerland
  2. 2.Departamento de Física FundamentalUniversidad de SalamancaSalamancaSpain

Personalised recommendations