Advertisement

Why Do We Need Quantum Field Theory After All?

Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 839)

Abstract

Quantum field theory is the basic tool to understand the physics of the elementary constituents of matter. It is both a very powerful and a very precise framework: using it we can describe physical processes in a range of energies going from the few millions electrovolts typical of nuclear physics to the thousands of billions of the Large Hadron Collider (LHC). And all this with astonishing precision.

Keywords

Large Hadron Collider (LHC) Negative Energy States Single-particle Interpretation Negative Scalar Product Klein-Gordon Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bjorken, J.D, Drell, S.D: Relativistic Quantum Fields. McGraw-Hill, New York (1965)zbMATHGoogle Scholar
  2. 2.
    Itzykson, C., Zuber, J.-B.: Quantum Field Theory. McGraw-Hill, New York (1980)Google Scholar
  3. 3.
    Aitchinson, I.J.R.: An Informal Introduction to Gauge Field Theories. Cambridge University Press, Cambridge (1982)CrossRefGoogle Scholar
  4. 4.
    Mandl, F., Shaw, G.: Quantum Field Theory. Wiley, New York (1984)Google Scholar
  5. 5.
    Ramond, P.: Field Theory: A Modern Primer. Addison-Wesley, Reading (1990)zbMATHGoogle Scholar
  6. 6.
    Sterman, G.: An Introduction to Quantum Field Theory. Cambridge University Press, Cambridge (1995)Google Scholar
  7. 7.
    Peskin, M.E, Schroeder, D.V: An Introduction to Quantum Field Theory. Addison Wesley, Reading (1995)Google Scholar
  8. 8.
    Weinberg, S.: The Quantum Theory of Fields. vol. 1–3, Cambridge University Press, Cambridge (1995)Google Scholar
  9. 9.
    Deligne, P. et al. (eds) Quantum Fields and Strings: A Course for Mathematicians. American Mathematical Society, Princeton (1999)zbMATHGoogle Scholar
  10. 10.
    Gribov, V.N., Nyiri, J.: Quantum Electrodynamics. Cambridge University Press, Cambridge (2001)Google Scholar
  11. 11.
    Zee, A.: Quantum Field Theory in a Nutshell. 2nd edn. 2010 Princeton (2003)Google Scholar
  12. 12.
    DeWitt, B.S.: The Global Approach to Quantum Field Theory. vols. 1 and 2, Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  13. 13.
    Nair, V.P.: Quantum Field Theory. A Modern Perspective. Springer, New York (2005)zbMATHGoogle Scholar
  14. 14.
    Maggiore, M.: A Modern Introduction to Quantum Field Theory. Oxford University Press, Oxford (2005)zbMATHGoogle Scholar
  15. 15.
    Banks, T.: Modern Quantum Field Theory. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  16. 16.
    Klein, O.: Die Reflexion von Elektronen an einem Potentialsprung nach der relativischen Dynamik von Dirac. Z. Phys. 53, 157 (1929)ADSCrossRefGoogle Scholar
  17. 17.
    Holstein, B.R.: Klein’s paradox. Am. J. Phys. 66, 507 (1998)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Dombey, N., Calogeracos, A.: Seventy years of the Klein paradox. Phys. Rep. 315, 41 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    Dombey, N., Calogeracos, A.: History and physics of the Klein paradox. Contemp. Phys. 40, 313 (1999) (quant-ph/9905076)ADSCrossRefGoogle Scholar
  20. 20.
    Sauter, F.: Zum Kleinschen Paradoxon. Z. Phys. 73, 547 (1932)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Theory Unit, Physics DepartmentCERNGenevaSwitzerland
  2. 2.Departamento de Física FundamentalUniversidad de SalamancaSalamancaSpain

Personalised recommendations