Effective Field Theories and Naturalness

Part of the Lecture Notes in Physics book series (LNP, volume 839)


\(\phi^{4}\)\(\overline{{MS}})\) Effective field theories are among the most powerful instruments in the toolbox of contemporary physics. Although the concept of effective field theory has been already discussed in Chap. 8, here we are going to provide a relatively elementary description of the relevant technology. Although rather unrealistic, the examples of effective field theories studied next serve the purpose of illustrating the relevant physics involved. The chapter will be closed with a discussion of the concept of naturalness, which plays a central role in modern particle physics. The reader is advised not to be scared by the technicalities of the Feynman diagram computations contained in the chapter. Most of the conclusions can be reached without caring too much about the precise value of the numerical prefactors.


Effective Field Theory Mass Independent Scheme Higgs Mass Counterterms Arbitrarily High Energies 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ’t Hooft, G., Veltman, M.J.G.: Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189 (1972)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Bollini, C.G., Giambiagi, J.J.: Dimensional renormalization: the number of dimensions as a regularizing parameter. Nuovo Cim. B 12, 20 (1972)Google Scholar
  3. 3.
    ’t Hooft, G.: Dimensional regularization and the renormalization group. Nucl. Phys. B 61, 455 (1973)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    ’t Hooft, G.: The renormalization group in quantum field theory. In: ’t Hooft, G. (ed.) Under the Spell of the Gauge Principle. World Scientific, Singapore (1994)Google Scholar
  5. 5.
    Weinberg, S.: New approach to the renormalization group. Phys. Rev. D 8, 3497 (1973)ADSCrossRefGoogle Scholar
  6. 6.
    Veltman, M.J.G.: The infrared-ultraviolet connection. Acta Phys. Polon. B 12, 437 (1981)Google Scholar
  7. 7.
    ’t Hooft, G.: Naturalness, chiral symmetry and spontaneous chiral symmetry breaking. In: ’t Hooft, G. (ed.) Under the Spell of the Gauge Principle. World Scientific, Singapore (1994)Google Scholar
  8. 8.
    Georgi, H.: Effective field theory. Ann. Rev. Nucl. Part. Sci. 43, 209 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    Polchinski, J.: Effective field theory and the fermi surface. In: Harvey, J., Polchinski, J. (eds.) Recent Directions in Particle Theory: from superstrings and Black Holes to the Standard Model. World Scientific, Singapore (1993) [arXiv:hep-th/9210046]Google Scholar
  10. 10.
    Kaplan, D.: Five Lectures on Effective Field Theory, Lectures Delivered at the 17th National Nuclear Physics Summer School, Berkeley (2005) [arXiv:nucl-th/0510023]Google Scholar
  11. 11.
    Burgess, C.P.: Introduction to effective field theory. Ann. Rev. Nucl. Part. Sci. 57, 329 (2007) [arXiv:hep-th/0701053]ADSCrossRefGoogle Scholar
  12. 12.
    Kaplan, D.B.: Effective field theories, lectures at the 7th Summer School in Nuclear Physics, Seattle (1995) [arXiv:nucl-th/9506035]Google Scholar
  13. 13.
    Manohar, A.V.: Effective field theories. In: Latal, H., Schweiger, W. (eds.) Perturbative and Nonperturbative Aspects of Quantum Field Theory. Springer, Berlin (1997) [arXiv:hep-ph/9606222]Google Scholar
  14. 14.
    Pich, A.: Effective field theory. In: Gupta, R., Morel, A., de Rafael, E., David, F. (eds.) Probing The Standard Model Of Particle Interactions. Elsevier, Amsterdam (1999) [arXiv:hep-ph/9806303]Google Scholar
  15. 15.
    Dirac, P.A.M.: A new basis for cosmology. Proc. Roy. Soc. A 165, 199 (1938)ADSCrossRefGoogle Scholar
  16. 16.
    Nelson, P.: Naturalness in theoretical physics. Am. Sci. 73, 60 (1985)ADSGoogle Scholar
  17. 17.
    Giudice, G.F.: Naturally speaking: the naturalness criterion and physics at the LHC. In: Kane, G., Pierce, A. (eds.) Perspectives on LHC Physics. World Scientific, Singapore (2008) [arXiv:0801.2562 [hep-ph]]Google Scholar
  18. 18.
    Wilson, K.G.: The renormalization group and strong interactions. Phys. Rev. D 3, 1818 (1971)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Susskind, L.: Dynamics of spontaneous symmetry breaking in the Weinberg–Salam theory. Phys. Rev. D 20, 2619 (1979)ADSCrossRefGoogle Scholar
  20. 20.
    Weinberg, S.: Anthropic bound on the cosmological constant. Phys. Rev. Lett. 59, 2607 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    Susskind, L.: The anthropic landscape of string theory. In: Carr, B. (ed.) Universe or Multiverse? Cambridge University Press, Cambridge 2007 [arXiv:hep-th/0302219]Google Scholar
  22. 22.
    Polchinski, J.: The cosmological constant and the string landscape. In: Gross, D., Henneaux, M., Sevrin, A. (eds.) The Quantum Structure of Space and Time. World Scientific, Singapore (2007) [arXiv:hep-th/0603249]Google Scholar
  23. 23.
    Appelquist, T., Carazzone, J.: Infrared singularities and massive fields. Phys. Rev. D 11, 2856 (1975)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Theory Unit, Physics DepartmentCERNGenevaSwitzerland
  2. 2.Departamento de Física FundamentalUniversidad de SalamancaSalamancaSpain

Personalised recommendations