Scope-Based Route Planning

  • Petr Hliněný
  • Ondrej Moriš
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6942)


A new approach to the static route planning problem, based on a multi-staging concept and a scope notion, is presented. The main goal (besides implied efficiency of planning) of our approach is to address—with a solid theoretical foundation—the following two practically motivated aspects: a route comfort and a very limited storage space of a small navigation device, which both do not seem to be among the chief objectives of many other studies. We show how our novel idea can tackle both these seemingly unrelated aspects at once, and may also contribute to other established route planning approaches with which ours can be naturally combined. We provide a theoretical proof that our approach efficiently computes exact optimal routes within this concept, as well as we demonstrate with experimental results on publicly available road networks of the US the good practical performance of the solution.


Road Network Optimal Route Route Planning Boundary Graph Scope Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling algorithm for shortest paths in road networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest paths, and provably efficient algorithms. In: SODA 2010: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 782–793 (2010)Google Scholar
  3. 3.
    Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant shortest-path queries in road networks. In: ALENEX 2007: Proceedings of the 9th Workshop on Algorithm Engineering and Experiments, pp. 46–59 (2007)Google Scholar
  4. 4.
    Bauer, R., Delling, D.: SHARC: Fast and robust unidirectional routing. J. Exp. Algorithmics 14(4), 2.4–4:2.29 (2010)Google Scholar
  5. 5.
    Brunel, E., Delling, D., Gemsa, A., Wagner, D.: Space-efficient SHARC-routing. In: SEA 2010: Proceedings of the 9th International Symposium on Experimental Algorithms, pp. 47–58 (2010)Google Scholar
  6. 6.
    Cherkassky, B., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: Theory and experimental evaluation. Mathematical Programming 73(2), 129–174 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Delling, D., Wagner, D.: Time-dependent route planning. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 207–230. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets graph theory. In: SODA 2005: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 156–165 (2005)Google Scholar
  12. 12.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A*: Efficient point-to-point shortest path algorithms. Technical report, Microsoft Research (2005)Google Scholar
  13. 13.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better landmarks within reach. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 38–51. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Goldberg, A.V., Werneck, R.F.: Computing point-to-point shortest paths from external memory. In: ALENEX/ANALCO 2005: Proceedings of the 7th Workshop on Algorithm Engineering and Experiments and the 2nd Workshop on Analytic Algorithmics and Combinatorics, pp. 26–40 (2005)Google Scholar
  15. 15.
    Gutman, R.: Reach-based routing: A new approach to shortest path algorithms optimized for road networks. In: ALENEX 2004: Proceedings of the 6th Workshop on Algorithm Engineering and Experiments, pp. 100–111 (2004)Google Scholar
  16. 16.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics SSC4 4(2), 100–107 (1968)CrossRefGoogle Scholar
  17. 17.
    Hliněný, P., Moriš, O.: Generalized maneuvers in route planning. ArXiv e-prints, arXiv:1107.0798 (July 2011)Google Scholar
  18. 18.
    Hliněný, P., Moriš, O.: Multi-Stage Improved Route Planning Approach: theoretical foundations. ArXiv e-prints, arXiv:1101.3182 (January 2011)Google Scholar
  19. 19.
    Maue, J., Sanders, P., Matijevic, D.: Goal-directed shortest-path queries using precomputed cluster distances. J. Exp. Algorithmics 14, 3.2–3.27 (2009)Google Scholar
  20. 20.
    Murdock, S.H.: 2009 TIGER/Line Shapefiles. Technical Documentation published by U.S. Census Bureau (2009)Google Scholar
  21. 21.
    Pohl, I.S.: Bi-directional and heuristic search in path problems. PhD thesis, Stanford University, Stanford, CA, USA (1969)Google Scholar
  22. 22.
    Sanders, P., Schultes, D.: Engineering highway hierarchies. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Sanders, P., Schultes, D., Vetter, C.: Mobile route planning. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 732–743. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Schultes, D.: Route Planning in Road Networks. PhD thesis, Karlsruhe University, Karlsruhe, Germany (2008)Google Scholar
  25. 25.
    Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Petr Hliněný
    • 1
  • Ondrej Moriš
    • 1
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations