Deterministic Discrepancy Minimization

  • Nikhil Bansal
  • Joel Spencer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6942)

Abstract

We derandomize a recent algorithmic approach due to Bansal [2] to efficiently compute low discrepancy colorings for several problems. In particular, we give an efficient deterministic algorithm for Spencer’s six standard deviations result [13], and to a find low discrepancy coloring for a set system with low hereditary discrepancy.

Keywords

Entropy Method Deterministic Algorithm Alive Variable Partial Coloring Hereditary Discrepancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Spencer, J.: The Probabilistic Method. John Wiley, Chichester (2000)CrossRefMATHGoogle Scholar
  2. 2.
    Bansal, N.: Constructive algorithm for discrepancy minimization. In: FOCS 2010 (2010)Google Scholar
  3. 3.
    Beck, J.: Roth’s estimate on the discrepancy of integer sequences is nearly sharp. Combinatorica 1, 319–325 (1981)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Beck, J., Sos, V.: Discrepancy theory. In: Graham, R.L., Grotschel, M., Lovasz, L. (eds.) Handbook of Combinatorics, pp. 1405–1446. North-Holland, Amsterdam (1995)Google Scholar
  5. 5.
    Chazelle, B.: The discrepancy method: randomness and complexity. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar
  6. 6.
    Engebretsen, L., Indyk, P., O’Donnell, R.: Derandomized dimensionality reduction with applications. In: SODA 2002, pp. 705–712 (2002)Google Scholar
  7. 7.
    Kim, J.H., Matousek, J., Vu, V.H.: Discrepancy After Adding A Single Set. Combinatorica 25(4), 499–501 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Matousek, J.: Geometric Discrepancy: An Illustrated Guide, Algorithms and Combinatorics, vol. 18. Springer, Heidelberg (1999)MATHGoogle Scholar
  9. 9.
    Matousek, J.: An Lp version of the Beck-Fiala conjecture. European Journal of Combinatorics 19(2), 175–182 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Mahajan, S., Ramesh, H.: Derandomizing Approximation Algorithms Based on Semidefinite Programming. SIAM J. Comput. 28(5), 1641–1663 (1999)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Raghavan, P.: Probabilistic construction of deterministic algorithms: approximating packing integer programs. J. of Computer and Systems Sciences 37, 130–143Google Scholar
  12. 12.
    Spencer, J.: Balancing Games. J. Comb. Theory, Ser. B 23(1), 68–74 (1977)Google Scholar
  13. 13.
    Spencer, J.: Six standard deviations suffice. Trans. Amer. Math. Soc. 289, 679–706 (1985)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Sivakumar, D.: Algorithmic Derandomization via Complexity Theory. In: IEEE Conference on Computational Complexity (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nikhil Bansal
    • 1
  • Joel Spencer
    • 2
  1. 1.IBM T.J. WatsonYorktown Hts.USA
  2. 2.New York UniversityNew YorkUSA

Personalised recommendations