Output-Sensitive Listing of Bounded-Size Trees in Undirected Graphs

  • Rui Ferreira
  • Roberto Grossi
  • Romeo Rizzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6942)

Abstract

Motivated by the discovery of combinatorial patterns in an undirected graph G with n vertices and m edges, we study the problem of listing all the trees with k vertices that are subgraphs of G. We present the first optimal output-sensitive algorithm, i.e. runs in O(sk) time where s is the number of these trees in G, and uses O(m) space.

Keywords

Span Tree Undirected Graph Recursive Call Internal Edge External Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alm, E., Arkin, A.P.: Biological networks. Current Opinion in Structural Biology 13(2), 193–202 (2003)CrossRefGoogle Scholar
  2. 2.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathematics 65(1-3), 21–46 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Gabow, H.N., Myers, E.W.: Finding all spanning trees of directed and undirected graphs. SIAM Journal on Computing 7(3), 280–287 (1978)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Kapoor, S., Ramesh, H.: Algorithms for enumerating all spanning trees of undirected and weighted graphs. SIAM Journal on Computing 24, 247–265 (1995)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002)CrossRefGoogle Scholar
  6. 6.
    Minty, G.: A simple algorithm for listing all the trees of a graph. IEEE Transactions on Circuit Theory 12(1), 120 (1965)CrossRefGoogle Scholar
  7. 7.
    Moon, J.: Counting Labelled Trees, Canadian Mathematical Monographs, No. 1. Canadian Mathematical Congress, Montreal (1970)Google Scholar
  8. 8.
    Nakano, S.I., Uno, T.: Constant time generation of trees with specified diameter. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) Graph -Theoretic Concepts in Computer Science. LNCS, vol. 3353, pp. 33–45. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths, and spanning trees. Networks (1975)Google Scholar
  10. 10.
    Shioura, A., Tamura, A., Uno, T.: An optimal algorithm for scanning all spanning trees of undirected graphs. SIAM Journal on Computing 26, 678–692 (1994)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rui Ferreira
    • 1
  • Roberto Grossi
    • 1
  • Romeo Rizzi
    • 2
  1. 1.Università di PisaItaly
  2. 2.Università degli Studi di UdineItaly

Personalised recommendations