Two-Bounded-Space Bin Packing Revisited

  • Marek Chrobak
  • Jiří Sgall
  • Gerhard J. Woeginger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6942)

Abstract

We analyze approximation algorithms for bounded-space bin packing by comparing them against the optimal bounded-space packing (instead of comparing them against the globally optimal packing that does not necessarily satisfy the bounded-space constraint). For 2-bounded-space bin packing we construct a polynomial time offline approximation algorithm with asymptotic worst case ratio 3/2, and we show a lower bound of 5/4 for this scenario. We show that no 2-bounded-space online algorithm can have an asymptotic worst case ratio better than 4/3.

Keywords

Polynomial Time Online Algorithm Large Item Item Size Equitable Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coffman Jr., E.G., Csirik, J., Woeginger, G.J.: Approximate solutions to bin packing problems. In: Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Applied Optimization, pp. 607–615. Oxford University Press, New York (2002)Google Scholar
  2. 2.
    Csirik, J., Imreh, B.: On the worst-case performance of the NkF bin packing heuristic. Acta Cybernetica 9, 89–105 (1989)MathSciNetMATHGoogle Scholar
  3. 3.
    Csirik, J., Johnson, D.S.: Bounded space on-line bin packing: Best is better than first. Algorithmica 31, 115–138 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Garey, M.R., Johnson, D.S: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)Google Scholar
  5. 5.
    Lee, C.C., Lee, D.T.: A simple on-line bin-packing algorithm. Journal of the ACM 32, 562–572 (1985)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Mao, W.: Tight worst-case performance bounds for Next-k-Fit bin packing. SIAM Journal on Computing 22, 46–56 (1993)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Woeginger, G.J.: Improved space for bounded-space, on-line bin-packing. SIAM Journal on Discrete Mathematics 6, 575–581 (1993)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marek Chrobak
    • 1
  • Jiří Sgall
    • 2
  • Gerhard J. Woeginger
    • 3
  1. 1.Department of Computer ScienceUniversity of CaliforniaRiversideUSA
  2. 2.Department of Applied MathematicsCharles UniversityPragueCzech Republic
  3. 3.Department of Mathematics and Computer ScienceTU EindhovenEindhovenThe Netherlands

Personalised recommendations