Advertisement

Passenger Flow-Oriented Train Disposition

  • Annabell Berger
  • Christian Blaar
  • Andreas Gebhardt
  • Matthias Müller-Hannemann
  • Mathias Schnee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6942)

Abstract

Disposition management solves the decision problem whether a train should wait for incoming delayed trains or not. This problem has a highly dynamic nature due to a steady stream of update information about delayed trains. A dispatcher has to solve a global optimization problem since his decisions have an effect on the whole network, but he takes only local decisions for subnetworks (for few stations and only for departure events in the near future). In this paper, we introduce a new model for an optimization tool. Our implementation includes as building blocks (1) routines for the permanent update of our graph model subject to incoming delay messages, (2) routines for forecasting future arrival and departure times, (3) the update of passenger flows subject to several rerouting strategies (including dynamic shortest path queries), and (4) the simulation of passenger flows. The general objective is the satisfaction of passengers. We propose three different formalizations of objective functions to capture this goal. Experiments on test data with the train schedule of German Railways and real delay messages show that our disposition tool can compute waiting decisions within a few seconds. In a test with artificial passenger flows it is fast enough to handle the typical amount of decisions which have to be taken within a period of 15 minutes in real time.

Keywords

Departure Event Arrival Event Event Graph Passenger Flow Delay Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schöbel, A.: Integer programming approaches for solving the delay management problem. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Algorithmic Methods for Railway Optimization 2004. LNCS, vol. 4359, pp. 145–170. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Berger, A., Gebhardt, A., Müller-Hannemann, M., Ostrowski, M.: Stochastic delay prediction in large train networks. Technical Report 2011/1, Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg (2011)Google Scholar
  3. 3.
    Meester, L.E., Muns, S.: Stochastic delay propagation in railway networks and phase-type distributions. Transportation Research Part B 41, 218–230 (2007)CrossRefGoogle Scholar
  4. 4.
    Yuan, J.: Stochastic modeling of train delays and delay propagation in stations. PhD thesis. Technische Universiteit Delft, The Netherlands (2006)Google Scholar
  5. 5.
    van der Meer, D., Goverde, R., Hansen, I.: Prediction of train running times and conflicts using track occupation data. In: Proceedings of 12th WCTR (2010)Google Scholar
  6. 6.
    Gatto, M., Glaus, B., Jacob, R., Peeters, L., Widmayer, P.: Railway delay management: Exploring its algorithmic complexity. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 199–211. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Gatto, M., Jacob, R., Peeters, L., Schöbel, A.: The computational complexity of delay management. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 227–238. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Schachtebeck, M., Schöbel, A.: To wait or not to wait - and who goes first? Delay management with priority decisions. Transportation Science 44, 307–321 (2010)CrossRefGoogle Scholar
  9. 9.
    Ginkel, A., Schöbel, A.: To wait or not to wait? The bicriteria delay management problem in public transportation. Transportation Science 41, 527–538 (2007)CrossRefGoogle Scholar
  10. 10.
    Müller-Hannemann, M., Schnee, M.: Efficient timetable information in the presence of delays. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 249–272. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Berger, A., Blaar, C., Gebhardt, A., Müller-Hannemann, M., Schnee, M.: Passenger flow-oriented train disposition. Technical Report 2011/2, Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg (2011)Google Scholar
  12. 12.
    Schnee, M.: Fully realistic multi-criteria timetable information systems. PhD thesis, Fachbereich Informatik, Technische Universität Darmstadt (2009)Google Scholar
  13. 13.
    Berger, A., Grimmer, M., Müller-Hannemann, M.: Fully dynamic speed-up techniques for multi-criteria shortest path searches in time-dependent networks. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 35–46. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Annabell Berger
    • 1
  • Christian Blaar
    • 1
  • Andreas Gebhardt
    • 1
  • Matthias Müller-Hannemann
    • 1
  • Mathias Schnee
    • 2
  1. 1.Department of Computer ScienceMartin-Luther-Universität Halle-WittenbergGermany
  2. 2.Department of Computer ScienceTechnische Universität DarmstadtGermany

Personalised recommendations