Polynomial-Time Approximation Schemes for Maximizing Gross Substitutes Utility under Budget Constraints

  • Akiyoshi Shioura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6942)


We consider the maximization of a gross substitutes utility function under budget constraints. This problem naturally arises in applications such as exchange economies in mathematical economics and combinatorial auctions in (algorithmic) game theory. We show that this problem admits a polynomial-time approximation scheme (PTAS). More generally, we present a PTAS for maximizing a discrete concave function called an M\(^\natural\)-concave function under budget constraints. Our PTAS is based on rounding an optimal solution of a continuous relaxation problem, which is shown to be solvable in polynomial time by the ellipsoid method. We also consider the maximization of the sum of two M\(^\natural\)-concave functions under a single budget constraint. This problem is a generalization of the budgeted max-weight matroid intersection problem to the one with a nonlinear objective function. We show that this problem also admits a PTAS.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ausubel, L.M., Milgrom, P.: Ascending auctions with package bidding. Front. Theor. Econ. 1, Article 1 (2002)Google Scholar
  2. 2.
    Berger, A., Bonifaci, V., Grandoni, F., Schäfer, G.: Budgeted matching and budgeted matroid intersection via the gasoline puzzle. Math. Programming (2009) (to appear)Google Scholar
  3. 3.
    Bing, M., Lehmann, D., Milgrom, P.: Presentation and structure of substitutes valuations. In: Proc. EC 2004, pp. 238–239 (2004)Google Scholar
  4. 4.
    Blumrosen, L., Nisan, N.: Combinatorial auction. In: Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V. (eds.) Algorithmic Game Theory, pp. 267–299. Cambridge Univ. Press, Cambridge (2007)CrossRefGoogle Scholar
  5. 5.
    Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (Extended abstract). In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint. SIAM J. Comput. (to appear)Google Scholar
  7. 7.
    Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT Press, Cambridge (2006)MATHGoogle Scholar
  8. 8.
    Cunningham, W.H.: On submodular function minimization. Combinatorica 5, 185–192 (1985)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dress, A.W.M., Wenzel, W.: Valuated matroids. Adv. Math. 93, 214–250 (1992)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652 (1998)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Feige, U.: On maximizing welfare when utility functions are subadditive. SIAM J. Comput. 39, 122–142 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In: Proc. FOCS 2007, pp. 461–471 (2007)Google Scholar
  13. 13.
    Frank, A., Tardos, É.: Generalized polymatroids and submodular flows. Math. Programming 42, 489–563 (1988)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Elsevier, Amsterdam (2005)MATHGoogle Scholar
  15. 15.
    Fujishige, S., Yang, Z.: A note on Kelso and Crawford’s gross substitutes condition. Math. Oper. Res. 28, 463–469 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Grandoni, F., Zenklusen, R.: Approximation schemes for multi-budgeted independence systems. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 536–548. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization, 2nd edn. Springer, Heidelberg (1993)CrossRefMATHGoogle Scholar
  18. 18.
    Gul, F., Stacchetti, E.: Walrasian equilibrium with gross substitutes. J. Econ. Theory 87, 95–124 (1999)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kelso, A.S., Crawford, V.P.: Job matching, coalition formation and gross substitutes. Econometrica 50, 1483–1504 (1982)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: Proc. SODA 2009, pp. 545–554 (2009)Google Scholar
  21. 21.
    Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone submodular functions under matroid or knapsack constraints. SIAM J. Discrete Math. 23, 2053–2078 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econom. Behav. 55, 270–296 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman problem. Oper. Res. 21, 498–516 (1973)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Megiddo, N.: Combinatorial optimization with rational objective functions. Math. Oper. Res. 4, 414–424 (1979)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Murota, K.: Convexity and Steinitz’s exchange property. Adv. Math. 124, 272–311 (1996)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Murota, K.: Valuated matroid intersection, I: optimality criteria, II: algorithms. SIAM J. Discrete Math. 9, 545–561, 562–576 (1996)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Murota, K.: Discrete convex analysis. Math. Programming 83, 313–371 (1998)MathSciNetMATHGoogle Scholar
  28. 28.
    Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)Google Scholar
  29. 29.
    Murota, K.: Recent developments in discrete convex analysis. In: Cook, W.J., Lovász, J., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 219–260. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Murota, K., Shioura, A.: Extension of M-convexity and L-convexity to polyhedral convex functions. Adv. in Appl. Math. 25, 352–427 (2000)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Murota, K., Tamura, A.: Application of M-convex submodular flow problem to mathematical economics. Japan J. Indust. Appl. Math. 20, 257–277 (2003)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Murota, K., Tamura, A.: New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities. Discrete Appl. Math. 131, 495–512 (2003)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 66–75. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  35. 35.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)CrossRefMATHGoogle Scholar
  36. 36.
    Shioura, A.: Minimization of an M-convex function. Discrete Appl. Math. 84, 215–220 (1998)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Shioura, A.: On the pipage rounding algorithm for submodular function maximization: a view from discrete convex analysis. Discrete Math. Algorithms Appl. 1, 1–23 (2009)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32, 41–43 (2004)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Wolsey, L.A.: Maximising real-valued submodular functions: primal and dual heuristics for location problems. Math. Oper. Res. 7, 410–425 (1982)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Akiyoshi Shioura
    • 1
  1. 1.GSISTohoku UniversitySendaiJapan

Personalised recommendations