Advertisement

Software Verification Using k-Induction

  • Alastair F. Donaldson
  • Leopold Haller
  • Daniel Kroening
  • Philipp Rümmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6887)

Abstract

We present combined-case k-induction, a novel technique for verifying software programs. This technique draws on the strengths of the classical inductive-invariant method and a recent application of k-induction to program verification. In previous work, correctness of programs was established by separately proving a base case and inductive step. We present a new k-induction rule that takes an unstructured, reducible control flow graph (CFG), a natural loop occurring in the CFG, and a positive integer k, and constructs a single CFG in which the given loop is eliminated via an unwinding proportional to k. Recursively applying the proof rule eventually yields a loop-free CFG, which can be checked using SAT-/SMT-based techniques. We state soundness of the rule, and investigate its theoretical properties. We then present two implementations of our technique: K-Inductor, a verifier for C programs built on top of the CBMC model checker, and K-Boogie, an extension of the Boogie tool. Our experiments, using a large set of benchmarks, demonstrate that our k-induction technique frequently allows program verification to succeed using significantly weaker loop invariants than are required with the standard inductive invariant approach.

Keywords

Nest Loop Direct Memory Access Control Flow Graph Loop Body Proof Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison Wesley, Reading (2006)Google Scholar
  2. 2.
    Armoni, R., Fix, L., Fraer, R., Huddleston, S., Piterman, N., Vardi, M.Y.: SAT-based induction for temporal safety properties. Electr. Notes Theor. Comput. Sci. 119(2), 3–16 (2005)CrossRefzbMATHGoogle Scholar
  3. 3.
    Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: PASTE, pp. 82–87. ACM, New York (2005)Google Scholar
  4. 4.
    Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An overview. In: Barthe, G., et al. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Advances in Computers 58, 118–149 (2003)Google Scholar
  7. 7.
    Bjesse, P., Claessen, K.: SAT-based verification without state space traversal. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 372–389. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. Formal Asp. Comput. 20(4-5), 379–405 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In: OOPSLA, pp. 213–226. ACM, New York (2008)Google Scholar
  11. 11.
    Donaldson, A.F., Haller, L., Kroening, D.: Strengthening Induction-Based Race Checking with Lightweight Static Analysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 169–183. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of scratch-pad memory code for heterogeneous multicore processors. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 280–295. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of DMA races using model checking and k-induction. In: Formal Methods in System Design (to appear, 2011), doi: 10.1007/s10703-011-0124-2Google Scholar
  14. 14.
    Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4) (2003)Google Scholar
  15. 15.
    Floyd, R.: Assigning meaning to programs. In: Mathematical Aspects of Computer Science. Proceedings of Symposia in Applied Mathematics, vol. 19, pp. 19–32. AMS, Providence (1967)Google Scholar
  16. 16.
    Franzén, A.: Using satisfiability modulo theories for inductive verification of Lustre programs. Electr. Notes Theor. Comput. Sci. 144(1), 19–33 (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Große, D., Le, H.M., Drechsler, R.: Proving transaction and system-level properties of untimed SystemC TLM designs. In: MEMOCODE, pp. 113–122. IEEE, Los Alamitos (2010)Google Scholar
  18. 18.
    Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with SMT-based techniques. In: FMCAD, pp. 109–117. IEEE, Los Alamitos (2008)Google Scholar
  19. 19.
    Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.: Loop summarization using abstract transformers. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 111–125. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 108–125. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Vimjam, V.C., Hsiao, M.S.: Explicit safety property strengthening in SAT-based induction. In: VLSID, pp. 63–68. IEEE, Los Alamitos (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alastair F. Donaldson
    • 1
  • Leopold Haller
    • 1
  • Daniel Kroening
    • 1
  • Philipp Rümmer
    • 2
  1. 1.Computer Science DepartmentOxford UniversityOxfordUK
  2. 2.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations