Automatic Occlusion Removal from Facades for 3D Urban Reconstruction

  • Chris Engels
  • David Tingdahl
  • Mathias Vercruysse
  • Tinne Tuytelaars
  • Hichem Sahli
  • Luc Van Gool
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6915)

Abstract

Object removal and inpainting approaches typically require a user to manually create a mask around occluding objects. While creating masks for a small number of images is possible, it rapidly becomes untenable for longer image sequences. Instead, we accomplish this step automatically using an object detection framework to explicitly recognize and remove several classes of occlusions. We propose using this technique to improve 3D urban reconstruction from street level imagery, in which building facades are frequently occluded by vegetation or vehicles. By assuming facades in the background are planar, 3D scene estimation provides important context to the inpainting process by restricting input sample patches to regions that are coplanar to the occlusion, leading to more realistic final textures. Moreover, because non-static and reflective occlusion classes tend to be difficult to reconstruct, explicitly recognizing and removing them improves the resulting 3D scene.

Keywords

Point Cloud Interest Point Vehicle Detection Building Facade Occlude Pixel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: A randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics (Proc. SIGGRAPH) 28(3) (August 2009)Google Scholar
  2. 2.
    Benitez, S., Denis, E., Baillard, C.: Automatic production of occlusion-free rectified facade textures using vehicle-based imagery. In: Photogrammetric Computer Vision and Image Analysis, p. A:275 (2010)Google Scholar
  3. 3.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefMATHGoogle Scholar
  4. 4.
    Criminisi, A., Perez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing 13, 1200–1212 (2004)CrossRefGoogle Scholar
  5. 5.
    Dick, A.R., Torr, P.H.S., Cipolla, R.: Modelling and interpretation of architecture from several images. Int. J. Comput. Vision 60, 111–134 (2004)CrossRefGoogle Scholar
  6. 6.
    Felzenszwalb, P., Girshick, R., McAllester, D.: Cascade object detection with deformable part models. In: Computer Vision and Pattern Recognition (2010)Google Scholar
  7. 7.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004) ISBN: 0521540518CrossRefMATHGoogle Scholar
  8. 8.
    Hedau, V., Hoiem, D., Forsyth, D.: Recovering the spatial layout of cluttered rooms. In: International Conference on Computer Vision (2009)Google Scholar
  9. 9.
    Hoiem, D., Efros, A.A., Hebert, M.: Putting objects in perspective. International Journal of Computer Vision 80(1), 3–15 (2008)CrossRefGoogle Scholar
  10. 10.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP 2006, pp. 61–70. Eurographics Association, Aire-la-Ville (2006)Google Scholar
  11. 11.
    Konushin, V., Vezhnevets, V.: Abstract automatic building texture completion. Graphicon (2007)Google Scholar
  12. 12.
    Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. International Journal of Computer Vision 77(1-3), 259–289 (2008)CrossRefGoogle Scholar
  13. 13.
    Rasmussen, C., Korah, T., Ulrich, W.: Randomized view planning and occlusion removal for mosaicing building facades. In: IEEE International Conference on Intelligent Robots and Systems (2005), http://nameless.cis.udel.edu/pubs/2005/RKU05
  14. 14.
    Rother, C., Kolmogorov, V., Blake, A.: ”grabcut”: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23, 309–314 (2004)CrossRefGoogle Scholar
  15. 15.
    Saxena, A., Chung, S.H., Ng, A.Y.: 3-d depth reconstruction from a single still image. International Journal of Computer Vision, IJCV 76 (2007)Google Scholar
  16. 16.
    Thomas, A., Ferrari, V., Leibe, B., Tuytelaars, T., Van Gool, L.: Shape-from-recognition: Recognition enables meta-data transfer. Computer Vision and Image Understanding 113(12), 1222–1234 (2009)CrossRefGoogle Scholar
  17. 17.
    Thomas, A., Ferrari, V., Leibe, B., Tuytelaars, T., Schiele, B., Van Gool, L.: Towards multi-view object class detection. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 2, pp. 1589–1596. IEEE Computer Society, Washington, DC, USA (2006)Google Scholar
  18. 18.
    Vergauwen, M., Van Gool, L.: Web-based 3d reconstruction service. Mach. Vision Appl. 17(6), 411–426 (2006)CrossRefGoogle Scholar
  19. 19.
    Wang, L., Jin, H., Yang, R., Gong, M.: Stereoscopic inpainting: Joint color and depth completion from stereo images. In: Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  20. 20.
    Werner, T., Zisserman, A.: Model selection for automated reconstruction from multiple views. In: British Machine Vision Conference, pp. 53–62 (2002)Google Scholar
  21. 21.
    Werner, T., Zisserman, A.: New techniques for automated architectural reconstruction from photographs. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 541–555. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Xiao, J., Fang, T., Zhao, P., Lhuillier, M., Quan, L.: Image-based street-side city modeling. ACM Trans. Graph. 28, 114:1–114:12 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chris Engels
    • 1
  • David Tingdahl
    • 1
  • Mathias Vercruysse
    • 1
  • Tinne Tuytelaars
    • 1
  • Hichem Sahli
    • 2
  • Luc Van Gool
    • 1
    • 3
  1. 1.ESAT-PSI/IBBTK.U. LeuvenBelgium
  2. 2.ETROV.U. BrusselBelgium
  3. 3.BIWIETH ZurichSwitzerland

Personalised recommendations