Advertisement

System on Chip Coprocessors for High Speed Image Feature Detection and Matching

  • Marek Kraft
  • Michał Fularz
  • Andrzej Kasiński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6915)

Abstract

Successful establishing of point correspondences between consecutive image frames is important in tasks such as visual odometry, structure from motion or simultaneous localization and mapping. In this paper, we describe the architecture of the compact, energy-efficient dedicated hardware processors, enabling fast feature detection and matching.

Keywords

Interest Point Visual Odometry Segment Test Integer Divider Surf Descriptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, M., Konolige, K., Blas, M.R.: Censure: Center surround extremas for realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)CrossRefGoogle Scholar
  3. 3.
    Deschamps, J.P., Bioul, G.J.A., Sutter, G.D.: Synthesis of Arithmetic Circuits: FPGA, ASIC and Embedded Systems. Wiley Interscience, Hoboken (2006)Google Scholar
  4. 4.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  5. 5.
    Kraft, M., Schmidt, A.: Simplifying SURF feature descriptor to achieve real-time performance. In: Burduk, R., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Computer Recognition Systems 4. Advances in Intelligent and Soft Computing, vol. 95, pp. 431–440. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In: Proc. of Int. Conf. on Image Processing (1), pp. 900–903 (2002)Google Scholar
  7. 7.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91 (2004)CrossRefGoogle Scholar
  8. 8.
    Mair, E., Hager, G.D., Burschka, D., Suppa, M., Hirzinger, G.: Adaptive and generic corner detection based on the accelerated segment test. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 183–196. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)Google Scholar
  10. 10.
    Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: IEEE Int. Conf. on Computer Vision, vol. 2, pp. 1508–1511 (October 2005)Google Scholar
  11. 11.
    Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Schmidt, A., Kraft, M., Kasinski, A.J.: An evaluation of image feature detectors and descriptors for robot navigation. In: ICCVG (2), pp. 251–259 (2010)Google Scholar
  13. 13.
    Smith, S.M., Brady, J.M.: SUSAN – a new approach to low level image processing. International Journal of Computer Vision 23(1), 45–78 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marek Kraft
    • 1
  • Michał Fularz
    • 1
  • Andrzej Kasiński
    • 1
  1. 1.Institute of Control and Information EngineeringPoznań University of TechnologyPoznańPoland

Personalised recommendations