Advertisement

Parallel Implementation of the Integral Histogram

  • Pieter Bellens
  • Kannappan Palaniappan
  • Rosa M. Badia
  • Guna Seetharaman
  • Jesus Labarta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6915)

Abstract

The integral histogram is a recently proposed preprocessing technique to compute histograms of arbitrary rectangular gridded (i.e. image or volume) regions in constant time. We formulate a general parallel version of the the integral histogram and analyse its implementation in Star Superscalar (StarSs). StarSs provides a uniform programming and runtime environment and facilitates the development of portable code for heterogeneous parallel architectures. In particular, we discuss the implementation for the multi-core IBM Cell Broadband Engine (Cell/B.E.) and provide extensive performance measurements and tradeoffs using two different scan orders or histogram propagation methods. For 640×480 images, a tile or block size of 28×28 and 16 histogram bins the parallel algorithm is able to reach greater than real-time performance of more than 200 frames per second.

Keywords

Parallel Implementation Ready Task Army Research Laboratory IEEE Signal Processing Magazine Cell Broadband Engine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldavert, D., de Mantaras, R.L., Ramisa, A., Toledo, R.: Fast and robust object segmentation with the integral linear classifier. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 1046–1053 (2010)Google Scholar
  2. 2.
    Wei, Y., Tao, L.: Efficient histogram-based sliding window. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 3003–3010 (2010)Google Scholar
  3. 3.
    Blake, G., Dreslinski, R.G., Mudge, T.: A survey of multicore processors. IEEE Signal Processing Magazine 26(6), 26–37 (2009)CrossRefGoogle Scholar
  4. 4.
    Lin, D., Huang, X., Nguyen, Q., Blackburn, J., Rodrigues, C., Huang, T., Do, M.N., Patel, S.J., Hwu, W.-M.W.: The parallelization of video processing. IEEE Signal Processing Magazine 26(6), 103–112 (2009)CrossRefGoogle Scholar
  5. 5.
    Shams, R., Sadeghi, P., Kennedy, R., Hartley, R.: A survey of medical image registration on multicore and the GPU. IEEE Signal Processing Magazine 27(2), 50–60 (2010)CrossRefGoogle Scholar
  6. 6.
    Palaniappan, K., Bunyak, F., Kumar, P., Ersoy, I., Jaeger, S., Ganguli, K., Haridas, A., Fraser, J., Rao, R., Seetharaman, G.: Efficient feature extraction and likelihood fusion for vehicle tracking in low frame rate airborne video. In: 13th Int. Conf. Information Fusion (2010)Google Scholar
  7. 7.
    Mehta, S., Misra, A., Singhal, A., Kumar, P., Mittal, A., Palaniappan, K.: Parallel implementation of video surveillance algorithms on GPU architectures using CUDA. In: 17th IEEE Int. Conf. Advanced Computing and Communications, ADCOM (2009)Google Scholar
  8. 8.
    Kumar, P., Palaniappan, K., Mittal, A., Seetharaman, G.: Parallel blob extraction using the multi-core cell processor. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 320–332. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Grauer-Gray, S., Kambhamettu, C., Palaniappan, K.: GPU implementation of belief propagation using CUDA for cloud tracking and reconstruction. In: 5th IAPR Workshop on Pattern Recognition in Remote Sensing (ICPR), pp. 1–4 (2008)Google Scholar
  10. 10.
    Zhou, L., Kambhamettu, C., Goldgof, D., Palaniappan, K., Hasler, A.F.: Tracking non-rigid motion and structure from 2D satellite cloud images without correspondences. IEEE Trans. Pattern Analysis and Machine Intelligence 23(11), 1330–1336 (2001)CrossRefGoogle Scholar
  11. 11.
    Porikli, F.: Integral histogram: A fast way to extract histograms in Cartesian spaces. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 829–836 (2005)Google Scholar
  12. 12.
    Podlozhnyuk, V.: Image convolution with CUDA. Technical report, NVIDIA Corp., Santa Clara, CA (2007)Google Scholar
  13. 13.
    Planas, J., Badia, R.M., Ayguadé, E., Labarta, J.: Hierarchical task-based programming with StarSs. Int. J. High Perform. Comput. Appl. 23(3), 284–299 (2009)CrossRefGoogle Scholar
  14. 14.
    Perez, J.M., Bellens, P., Badia, R.M., Labarta, J.: CellSs: Making it easier to program the Cell Broadband Engine processor. IBM J. Res. Dev. 51(5), 593–604 (2007)CrossRefGoogle Scholar
  15. 15.
    Palaniappan, K., Ersoy, I., Nath, S.K.: Moving object segmentation using the flux tensor for biological video microscopy. In: Ip, H.H.-S., Au, O.C., Leung, H., Sun, M.-T., Ma, W.-Y., Hu, S.-M. (eds.) PCM 2007. LNCS, vol. 4810, pp. 483–493. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Bunyak, F., Palaniappan, K., Nath, S.K., Seetharaman, G.: Flux tensor constrained geodesic active contours with sensor fusion for persistent object tracking. J. Multimedia 2(4), 20–33 (2007)CrossRefGoogle Scholar
  17. 17.
    Bunyak, F., Palaniappan, K., Nath, S.K., Seetharaman, G.: Geodesic active contour based fusion of visible and infrared video for persistent object tracking. In: 8th IEEE Workshop Applications of Computer Vision (WACV 2007), Austin, TX, pp. 35–42 (February 2007)Google Scholar
  18. 18.
    Chan, A.L.: A description on the second dataset of the U.S. Army Research Laboratory Force Protection Surveillance System. Technical Report ARL-MR-0670, Army Research Laboratory, Adelphi, MD (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pieter Bellens
    • 1
  • Kannappan Palaniappan
    • 4
  • Rosa M. Badia
    • 1
    • 3
  • Guna Seetharaman
    • 5
  • Jesus Labarta
    • 1
    • 2
  1. 1.Barcelona Supercomputing CenterSpain
  2. 2.Universitat Politecnica de CatalunyaSpain
  3. 3.Intelligence Research Institute (IIIA)Spanish National Research Council (CSIC)Spain
  4. 4.Dept. of Computer ScienceUniversity of MissouriColumbiaUSA
  5. 5.Air Force Research LaboratoryInformation DirectorateRomeUSA

Personalised recommendations