Detection of Human Groups in Videos

  • Selçuk Sandıkcı
  • Svitlana Zinger
  • Peter H. N. de With
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6915)


In this paper, we consider the problem of finding and localizing social human groups in videos, which can form a basis for further analysis and monitoring of groups in general. Our approach is motivated by the collective behavior of individuals which has a fundament in sociological studies. We design a detection-based multi-target tracking framework which is capable of handling short-term occlusions and producing stable trajectories. Human groups are discovered by clustering trajectories of individuals in an agglomerative fashion. A novel similarity function related to distances between group members, robustly measures the similarity of noisy trajectories. We have evaluated our approach on several test sequences and achieved acceptable miss rates (19.4%, 29.7% and 46.7%) at reasonable false positive detections per frame (0.129, 0.813 and 0.371). The relatively high miss rates are caused by a strict evaluation procedure, whereas the visual results are quite acceptable.


Human Group Human Detection Cluster Threshold Group Detection Tracking Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Choi, W., Savarese, S.: Multiple target tracking in world coordinate with single, minimally calibrated camera. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 553–567. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    French, A.P., Naeem, A., Dryden, I.L., Pridmore, T.P.: Using social effects to guide tracking in complex scenes. In: Advanced Video and Signal Based Surveillance, pp. 212–217 (2007)Google Scholar
  3. 3.
    Kilambi, P., Ribnick, E., Joshi, A.J., Masoud, O., Papanikolopoulos, N.: Estimating pedestrian counts in groups. Computer Vision and Image Understanding 110(1), 43–59 (2008)CrossRefGoogle Scholar
  4. 4.
    McPhail, C., Wohlstein, R.: Using film to analyze pedestrian behavior. Sociological Methods and Research 10(3), 347–375 (1982)CrossRefGoogle Scholar
  5. 5.
    Haritaoglu, I., Flickner, M.: Detection and tracking of shopping groups in stores. In: IEEE CVPR, vol. 1, p. 431 (2001)Google Scholar
  6. 6.
    Cupillard, F., Brémond, F., Thonnat, M.: Tracking group of people for video surveillance. In: Proc. of the 2nd European Workshop on Advanced Video-Based Surveillance System (2001)Google Scholar
  7. 7.
    Ge, W., Collins, R.T., Ruback, B.: Automatically detecting the small group structure of a crowd. In: IEEE Workshop on Applications of Computer Vision (2009)Google Scholar
  8. 8.
    Newman, M.: Finding community structure in networks using the eigenvectors of matrices. Physical Review E 74(3) (2006)Google Scholar
  9. 9.
    Yu, T., Lim, S.-N., Patwardhan, K., Krahnstoever, N.: Monitoring, recognizing and discovering social networks. In: IEEE CVPR, pp. 1462–1469 (2009)Google Scholar
  10. 10.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. on Pattern Analysis and Machine Intell. 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  11. 11.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. on Pattern Analysis and Machine Intell. 35(5), 564–575 (2003)CrossRefGoogle Scholar
  12. 12.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE CVPR, vol. 1(2), pp. 886–893 (2005)Google Scholar
  13. 13.
    Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. International Journal of Computer Vision 75(2), 247–266 (2007)CrossRefGoogle Scholar
  14. 14.
    Laviola, J.: An experiment comparing double exponential smoothing and Kalman filter-based predictive tracking algorithms. In: Proc. IEEE Int. Conf. Virtual Reality, pp. 283–284 (2003)Google Scholar
  15. 15.
    Hartley, R.I., Zisserman, A.: Projective transformations. In: Multiple View Geometry in Computer Vision, 2nd edn., pp. 32–37. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  16. 16.
    Blunsden, S., Fisher, R.B.: The BEHAVE video dataset: ground truthed video for multi-person behavior classification. Annals of the BMVA, 1–12 (2010)Google Scholar
  17. 17.
    Duda, R.O., Hart, P.E., Stork, D.G.: Hierarchical clustering. In: Pattern Classification, 2nd edn., pp. 550–556. John Wiley and Sons, Inc., Chichester (2001)Google Scholar
  18. 18.
  19. 19.
  20. 20.
  21. 21.
    Okuma, K., Taleghani, A., de Freitas, N., Little, J.J., Lowe, D.G.: A boosted particle filter: Multitarget detection and tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J. on Image and Video Processing 2008, 1–10 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Selçuk Sandıkcı
    • 1
  • Svitlana Zinger
    • 1
  • Peter H. N. de With
    • 1
  1. 1.Eindhoven University of TechnologyThe Netherlands

Personalised recommendations