Skip to main content

3D Facial Expression Recognition Based on Histograms of Surface Differential Quantities

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6915))

Abstract

3D face models accurately capture facial surfaces, making it possible for precise description of facial activities. In this paper, we present a novel mesh-based method for 3D facial expression recognition using two local shape descriptors. To characterize shape information of the local neighborhood of facial landmarks, we calculate the weighted statistical distributions of surface differential quantities, including histogram of mesh gradient (HoG) and histogram of shape index (HoS). Normal cycle theory based curvature estimation method is employed on 3D face models along with the common cubic fitting curvature estimation method for the purpose of comparison. Based on the basic fact that different expressions involve different local shape deformations, the SVM classifier with both linear and RBF kernels outperforms the state of the art results on the subset of the BU-3DFE database with the same experimental setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Otsuka, K., Sawada, H., Yamato, J.: Automatic inference of cross-modal nonverbal interactions in multiparty conversations: ”who responds to whom, when, and how?” from gaze, head gestures, and utterances. In: ICMI, pp. 255–262. ACM Press, New York (2007)

    Chapter  Google Scholar 

  2. Ekman, P.: Universals and cultural differences in facial expressions of emotion. In: Nebraska Symposium on Motivation, Lincoln, NE, pp. 207–283 (1972)

    Google Scholar 

  3. Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. In: Pattern Recognition, pp. 259–275 (2003)

    Google Scholar 

  4. Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.: A 3D Facial Expression Database For Facial Behavior Research. In: The 7th International Conference on Automatic Face and Gesture Recognition (FG), pp. 211–216. IEEE Computer Society, Los Alamitos (2006); TC PAMI

    Google Scholar 

  5. Wang, J., Yin, L., Wei, X., Sun, Y.: 3d facial expression recognition based on primitive surface feature distribution. In: CVPR, pp. 1399–1406 (2006)

    Google Scholar 

  6. Soyel, H., Demirel, H.: Facial expression recognition using 3d facial feature distances. In: Int. Conf. on Image Analysis and Recognition, pp. 831–838 (2007)

    Google Scholar 

  7. Mpiperis, I., Malassiotis, S., Strintzis, M.G.: Bilinear models for 3-d face and facial expression recognition. IEEE Transactions on Information Forensics and Security 3(3), 498–511 (2008)

    Article  Google Scholar 

  8. Tang, H., Huang, T.S.: 3d facial expression recognition based on automatically selected features. In: Int. Conf. on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  9. Gong, B., Wang, Y., Liu, J., Tang, X.: Automatic facial expression recognition on a single 3d face by exploring shape deformation. In: Int. Conf. on Multimedia, pp. 569–572 (2009)

    Google Scholar 

  10. Maalej, A., Ben Amor, B., Daoudi, M., Srivastava, A., Berretti, S.: Local 3D Shape Analysis for Facial Expression Recognition. In: ICPR, pp. 4129–4132. IEEE, Los Alamitos (2010)

    Google Scholar 

  11. Berretti, S., Bimbo, A.D., Pala, P., Ben Amor, B., Daoudi, M.: A Set of Selected SIFT Features for 3D Facial Expression Recognition. In: ICPR, pp. 4125–4128. IEEE, Los Alamitos (2010)

    Google Scholar 

  12. Yin, L., Chen, X., Sun, Y., Worm, T., Reale, M.: A High-Resolution 3D Dynamic Facial Expression Database. In: IEEE Int. Conference on Automatic Face Gesture Recognition, pp. 1–6 (2008)

    Google Scholar 

  13. Sun, Y., Yin, L.: Facial Expression Recognition Based on 3D Dynamic Range Model Sequences. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 58–71. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Lowe, D.G.: Distinctive image features from scale invariant keypoints. IJCV, 91–110 (2004)

    Google Scholar 

  15. Fabry, M.C., et al.: Feature detection on 3d face surfaces for pose normalisation and recognition. In: BTAS (2010)

    Google Scholar 

  16. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: ICCV, p. 902. IEEE Computer Society, USA (1995)

    Google Scholar 

  17. Cohen-Steiner, D., Morvan, J.M.: Restricted delaunay triangulations and normal cycle. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 312–321. ACM, New York (2003)

    Google Scholar 

  18. Morvan, J.M.: Generalized Curvatures. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  19. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22(3), 485–493 (2003)

    Article  Google Scholar 

  20. Goldfeather, J., Interrante, V.: A novel cubic-order algorithm for approximating principal direction vectors. ACM Trans. Graph., 45–63 (2004)

    Google Scholar 

  21. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  22. Zhao, X., Szeptycki, P., Dellandrea, E., Chen, L.: Precise 2.5D Facial Landmarking via an Analysis by Synthesis approach. In: 2009 IEEE Workshop on Applications of Computer Vision (WACV 2009), Snowbird, Utah (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, H., Morvan, JM., Chen, L. (2011). 3D Facial Expression Recognition Based on Histograms of Surface Differential Quantities. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23687-7_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23686-0

  • Online ISBN: 978-3-642-23687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics