Fuzzy Cognitive Maps Applied to Synthetic Aperture Radar Image Classifications

  • Gonzalo Pajares
  • Javier Sánchez-Lladó
  • Carlos López-Martínez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6915)

Abstract

This paper proposes a method based on Fuzzy Cognitive Maps (FCM) for improving the classification provided by the Wishart maximum-likelihood based approach in Synthetic Aperture Radar (SAR) images. FCM receives the classification results provided by the Wishart approach and creates a network of nodes associating a pixel to a node. The activation levels of these nodes define the degree of membeship of each pixel to each class. These activations levels are iteratively reinforced or punished based on the existing relations among each node and its neighbours and also taking into account the own node under consideration. Through a quality coefficient we measure the performance of the proposed approach with respect to the Wishart classifier.

Keywords

Fuzzy Cognitive Maps Wishart classifier Synthetic Aperture Radar (SAR) Polarimetric SAR (POLSAR) classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, J.S., Grunes, M.R., Pottier, E., Ferro-Famil, L.: Unsupervised Terrain Classification Preserving scattering characteristics. IEEE Trans. Geoscience Remote Sens. 42(4), 722–731 (2004)CrossRefGoogle Scholar
  2. 2.
    Lee, J.S., Pottier, E.: Polarimetric Radar Imaging: From Basics to Applications. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  3. 3.
    Sharma, J.J., Hajnsek, I., Papathanassiou, K.P., Moreira, A.: Polarimetric decomposition over Glacier Ice using long-wavelength Airborne PolSAR. IEEE Trans. Geoscience Remote Sens. 49(1), 519–535 (2011)CrossRefGoogle Scholar
  4. 4.
    Ferro-Famil, L., Pottier, E., Lee, J.S.: Unsupervised Classification of Multifrequency and Fully Polarimetric SAR Images Based on the H/A/Alpha-Whisart Classifier. IEEE Trans. Goscience Remote Sensing 39(11), 2332–2342 (2001)CrossRefGoogle Scholar
  5. 5.
    Wang, Y., Han, C., Tupin, F.: PolSAR Data Segmentation by Combining Tensor Space Cluster Analysis and Markovian Framework. IEEE Geoscience and Remote Sensing Letters 7(1), 210–214 (2010)CrossRefGoogle Scholar
  6. 6.
    Du, L., Lee, J.S.: Fuzzy classification of earth terrain covers using complex polarimetric SAR data. Int. J. Remote Sensenig 17(4), 809–826 (1996)CrossRefGoogle Scholar
  7. 7.
    Cloude, S.R., Pottier, E.: Application of the H/A/α polarimetric decomposition theorem for land classification. In: Proc. SPIE, vol. 3120, pp. 132–143 (1997)Google Scholar
  8. 8.
    Cloude, S.R., Pottier, E.: An entropy based classification scheme for land applications of POLSAR. IEEE Trans. Geosci. Remote Sensing 35(1), 68–78 (1997)CrossRefGoogle Scholar
  9. 9.
    Lee, J.S., Grunes, M.R., Ainsworth, T., Du, L.J., Schuler, D., Cloude, S.: Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Trans. Geosci. Remote Sensing 37(5), 2249–2258 (1999)CrossRefGoogle Scholar
  10. 10.
    Ersahin, K., Cumming, I.G., Ward, R.K.: Segmentation and Classification of Polarimetric SAR Data Using Spectral Graph Partitioning. IEEE Trans. Geoscience Remote Sens. 48(1), 164–174 (2010)CrossRefGoogle Scholar
  11. 11.
    Tsardias, A.K., Margaritis, K.G.: An experimental study of the dynamics of the certainty neuron fuzzy cognitive maps. Neurocomputing 24, 95–116 (1999)CrossRefGoogle Scholar
  12. 12.
    Kosko, B.: Neural Networks and Fuzzy Systems: a Dynamical Systems Approach to Machine Intelligence. Prentice-Hall, NJ (1992)MATHGoogle Scholar
  13. 13.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure IEEE Trans. Pattern Anal. Machine Intell. 1, 224–227 (1979)CrossRefGoogle Scholar
  14. 14.
    Google Earth, The Google Earth product family (2011), http://www.google.es/intl/es_es/earth/download/ge/agree.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gonzalo Pajares
    • 1
  • Javier Sánchez-Lladó
    • 2
  • Carlos López-Martínez
    • 2
  1. 1.Dpto. Ingeniería del Software e Inteligencia Artificial, Facultad de InformáticaUniversity Complutense of MadridMadridSpain
  2. 2.Remote Sensing Laboratory (RSLab), Signal Theory and Communications DepartmentUniversitat Politècnica de Catalunya (UPC)BarcelonaSpain

Personalised recommendations