Advanced Nanostructured Surfaces for the Control of Biofouling: Cell Adhesions to Three-Dimensional Nanostructures

  • Chang-Hwan Choi
  • Chang-Jin Kim
Part of the Green Energy and Technology book series (GREEN)


In marine environments or industrial water systems, microorganisms are likely to adhere onto surfaces and form biofilms. Such biofouling creates significant adverse effects, e.g., increases flow friction by roughening surfaces. Previous studies demonstrated the effectiveness of surface microstructures on the prevention of biofouling, which is also closely associated with the surface energy and wettability. Unfortunately, the study of the anti-biofouling property of the micro- and nanostructured surfaces with regulated surface wettability is underperformed at present. In this paper, we report on the bio-adhesions of various cell types on nanoengineered surfaces with dense-array nanostructures whose physical and chemical properties are systematically controlled for the prevention of biofouling. Two nanopatterns (pillar and grating) with varying three-dimensionalities (e.g., structural heights are varied from 50 to 500 nm while the pattern periodicity is fixed at 230 nm) are tested in both hydrophilic and hydrophobic surface conditions. The structural tips are especially sharpened (<10 nm in tip radius) to minimize the cell contact to the substrate and potentially biofouling. The experimental results show that cells were much smaller and their proliferation significantly lower on taller nanostructures in both hydrophilic and hydrophobic surface conditions. Cells were found levitated by sharp tips and easily peeled off, i.e., their adherence to the sharp-tip tall nanostructures was relatively weak regardless of the surface wettability. The ability to control adherence and growth of cells by nanoscale surface topographies can empower the micro- and nanotechnology-based materials, devices, and systems for anti-biofouling and anti-microbial applications. The knowledge obtained through this investigation will also be useful in engineering problems that involve contact with biological substances and in the development of energy efficient surfaces for green tribology.


Cell Sheet Nanostructured Surface Small Cell Size Human Foreskin Fibroblast Interference Lithography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Science Foundation Nanoscale Interdisciplinary Research Teams Grant 0103562. The authors thank Profs. Benjamin Wu and James Dunn for numerous assistance and discussions as this work evolved and Dr. Sepideh Hagvall for the help in the cell culture and data collection/interpretation.


  1. 1.
    G.G. Geesey, Z. Lewandowski, H.-C. Flemming, Biofouling and Biocorrosion in Industrial Water Systems (CRC Press, Boca Raton, 1994)Google Scholar
  2. 2.
    M. Fingerman, R. Nagabhushanam, M.-F. Thompson, Recent Advances in Marine Biotechnology: Biofilms, Bioadhesion, Corrosion, and Biofouling (Science Publishers, Enfield, 1999)Google Scholar
  3. 3.
    J. Walker, S. Surman, J. Jass, Industrial Biofouling: Detection, Prevention and Control (Wiley, Chichester, 2000)Google Scholar
  4. 4.
    A.I. Raikin, Marine Biofouling: Colonization Processes and Defenses (CRC Press, Boca Raton, 2003)CrossRefGoogle Scholar
  5. 5.
    Z. Lewandowski, P. Stoodley, Flow induced vibrations, drag force, and pressure drop in conduits covered biofilm. Wat. Sci. Tech. 32, 19–26 (1995)CrossRefGoogle Scholar
  6. 6.
    P. Stoodley, Z. Lewandowski, J.D. Boyle, H.M. Lappin-Scott, Oscillation characteristics of biofilm streamers in turbulent flowing water as related to drag and pressure drop. Biotechnol. Bioeng. 57, 536–544 (1998)CrossRefGoogle Scholar
  7. 7.
    M.P. Schultz, G.W. Swain, The influence of biofilms on skin friction drag. Biofouling 15, 129–139 (2000)CrossRefGoogle Scholar
  8. 8.
    E.R. Holm, M.P. Schultz, E.G. Haslbeck, W.J. Talbott, A.J. Field, Evaluation of hydrodynamic drag on experimental fouling-release surfaces, using rotating disks. Biofouling 20, 219–226 (2004)CrossRefGoogle Scholar
  9. 9.
    M.P. Schultz, Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23, 331–341 (2007)CrossRefGoogle Scholar
  10. 10.
    A.F. Barton, M.R. Wallis, J.E. Sargison, A. Buia, G.J. Walker, Hydraulic roughness of biofouled pipes, biofilm character, and measured improvements from cleaning. J. Hydraul. Eng. 134, 852–857 (2008)CrossRefGoogle Scholar
  11. 11.
    R.L. Townsin, The ship hull fouling penalty. Biofouling 19, 9–15 (2003)CrossRefGoogle Scholar
  12. 12.
    M.E. Callow, Marine biofouling: a sticky problem. Biologist 49, 1–5 (2002)Google Scholar
  13. 13.
    D. Howell, B. Behrends, A review of surface roughness in antifouling coatings illustrating the importance of cutoff length. Biofouling 22, 401–410 (2006)CrossRefGoogle Scholar
  14. 14.
    J.A. Lewis, Marine biofouling and its prevention on underwater surfaces. Mater. Forum 22, 41–61 (1998)Google Scholar
  15. 15.
    J.A. Lewis, Antifoulings: towards and beyond the global TBT ban. Ships Ports 12, 28 (2000)Google Scholar
  16. 16.
    M.E. Callow, Ship-fouling: the problem and methods of control. Biodeterior. Abstr 10, 411–421 (1996)Google Scholar
  17. 17.
    A.S. Clare, Towards nontoxic antifouling. J. Mar. Biotech. 6, 3–6 (1998)Google Scholar
  18. 18.
    P.E. Dyrynda, Defensive strategies of modular organisms. Philos. TR. Soc. B 313, 227–243 (1986)CrossRefGoogle Scholar
  19. 19.
    M. Andersson, K. Berntsson, P. Jonsson, P. Gatenholm, Microtextured surfaces: towards macrofouling resistant coatings. Biofouling 14, 167–178 (1999)CrossRefGoogle Scholar
  20. 20.
    P. Ball, Shark skin and other solutions. Nature (London) 400, 507–508 (1999)CrossRefGoogle Scholar
  21. 21.
    A.V. Bers, M. Wahl, The influence of natural surface microtopographies on fouling. Biofouling 20, 43–51 (2004)CrossRefGoogle Scholar
  22. 22.
    L. Hoipkemeier-Wilson, J.F. Schumacher, M.L. Carman, A.L. Gibson, A.W. Feinberg, M.E. Callow, J.A. Finlay, J.A. Callow, A.B. Brennan, Antifouling potential of lubricious, micro-engineered, PDMS elastomers against zoospores of the green fouling alga Ulva (Enteromorpha). Biofouling 20, 53–63 (2004)CrossRefGoogle Scholar
  23. 23.
    H. Zhang, R. Lamb, J. Lewis, Engineering nanoscale roughness on hydrophobic surface—Preliminary assessment of fouling behaviour. Sci. Technol. Adv. Mat. 6, 236–239 (2005)CrossRefGoogle Scholar
  24. 24.
    G.A. Abrams, S.L. Goodman, P.F. Nealey, M. Franco, C.J. Murphy, Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res. 299, 39–46 (2000)CrossRefGoogle Scholar
  25. 25.
    E. Cukierman, R. Pankov, D.R. Stevens, K.M. Yamada, Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001)CrossRefGoogle Scholar
  26. 26.
    E. Cukierman, R. Pankov, K.M. Yamada, Cell interactions with three-dimensional matrices. Curr. Opin. Cell Biol. 14, 633–639 (2002)CrossRefGoogle Scholar
  27. 27.
    C.-H. Choi, C.-J. Kim, Fabrication of dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control. Nanotechnology 17, 5326–5333 (2006)CrossRefGoogle Scholar
  28. 28.
    C.-H. Choi, S.H. Hagvall, B.M. Wu, J.C.Y. Dunn, R.E. Beygui, C.-J. Kim, Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials 28, 1672–1679 (2007)CrossRefGoogle Scholar
  29. 29.
    S.H. Hagvall, C.-H. Choi, J.C.Y. Dunn, S. Heydarkhan, K. Schenke-Layland, W.R. MacLellan, R.E. Beygui, Influence of systematically varied nano-scale topography on cell morphology and adhesion. Cell Comm. Adhes. 14, 181–194 (2007)CrossRefGoogle Scholar
  30. 30.
    C.-H. Choi, S.H. Hagvall, B.M. Wu, J.C.Y. Dunn, R.E. Beygui, C.-J. Kim, Cell growth as a sheet on three-dimensional sharp-tip nanostructures. J. Biomed. Mater. Res. A 89, 804–817 (2009)Google Scholar
  31. 31.
    I. Wathuthanthri, W. Mao, C.H. Choi, Two degrees-of-freedom Lloyd-mirror interferometer for superior pattern coverage area. Opt. Lett. 36(9), 1593–1595 (2011)CrossRefGoogle Scholar
  32. 32.
    M.J. Dalby, C.C. Berry, M.O. Riehle, D.S. Sutherland, H. Agheli, A.S.G. Curtis, Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp. Cell Res. 295, 387–394 (2004)CrossRefGoogle Scholar
  33. 33.
    A.S.G. Curtis, M.J. Dalby, N. Gadegaard, Nanoimprinting onto cells. J. R. Soc. Interface 3, 393–398 (2006)CrossRefGoogle Scholar
  34. 34.
    U. Gimsa, A. Iglic, S. Fiedler, M. Zwanzig, V. Kralj-Iglic, L. Jonas, J. Gimsa, Actin is not required for nanotubular protrusions of primary astrocytes grown on metal nano-lawn. Mol. Membr. Biol. 24, 243–255 (2007)CrossRefGoogle Scholar
  35. 35.
    S. Nomura, H. Kojima, Y. Ohyabu, K. Kuwabara, A. Miyauchi, T. Uemura, Cell culture on nanopillar sheet: study of HeLa cells on nanopillar sheet. Jap. J. Appl. Phys. 44, L1184–L1186 (2005)CrossRefGoogle Scholar
  36. 36.
    A.I. Teixeira, G.A. Abrams, P.J. Bertics, C.J. Murphy, P.F. Nealey, Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 116(10), 1881–1892 (2003)CrossRefGoogle Scholar
  37. 37.
    R. Lipowsky, The conformation of membranes. Nature (London) 349, 475–481 (1991)CrossRefGoogle Scholar
  38. 38.
    N.W. Karuri, S. Liliensiek, A.I. Teixeria, G. Abrams, S. Campbell, P.F. Nealey, C.J. Murphy, Biological length scale topography enhanced cell-substratum adhesion of human corneal epithelial cells. J. Cell Sci. 117, 3153–3164 (2004)CrossRefGoogle Scholar
  39. 39.
    A.I. Teixeira, P.F. Nealey, C.J. Murphy, Responses of human keratocytes to micro- and nanostructured substrates. J. Biomed. Mater. Res. 71A, 369–376 (2004)CrossRefGoogle Scholar
  40. 40.
    L. Chou, J.D. Firth, V.J. Uitto, D.M. Brunette, Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J. Cell Sci. 108, 1563–1573 (1995)Google Scholar
  41. 41.
    A.S.G. Curtis, B. Casey, J.O. Gallgher, D. Pasqui, M.A. Wood, C.D.W. Wilkinson, Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important? Biophys. Chem. 94, 275–283 (2001)CrossRefGoogle Scholar
  42. 42.
    P.T. Ohara, R.C. Buck, Contact guidance in vitro: a light, transmission, and scanning electron microscopic study. Exp. Cell Res. 121, 235–249 (1979)CrossRefGoogle Scholar
  43. 43.
    C.-H. Choi, C.-J. Kim, Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys. Rev. Lett. 96, 066001 (2006)CrossRefGoogle Scholar
  44. 44.
    C.-H. Choi, U. Ulmanella, J. Kim, C.-M. Ho, C.-J. Kim, Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys. Fluids 18, 087105 (2006)CrossRefGoogle Scholar
  45. 45.
    S. Turner, L. Kam, M. Isaacson, H.G. Craighead, W. Shain, J. Turner, Cell attachment on silicon nanostructures. J. Vac. Sci. Technol. B 15, 2848–2854 (1997)CrossRefGoogle Scholar
  46. 46.
    M.J. Dalby, D. Pasqui, S. Affrossman, Cell response to nano-islands produced by polymer demixing: a brief review. IEE Proc. Nanobiotechnol. 151, 53–61 (2004)CrossRefGoogle Scholar
  47. 47.
    M.J. Dalby, M.O. Riehle, D.S. Sutherland, H. Agheli, A.S.G. Curtis, Fibroblast response to a controlled nanoenvironment produced by colloidal lithography. J. Biomed. Mater. Res. 69A, 314–322 (2004)CrossRefGoogle Scholar
  48. 48.
    M.J. Dalby, M.O. Riehle, D.S. Sutherland, H. Agheli, A.S.G. Curtis, Changes in fibroblast morphology in response to nano-columns produced by colloidal lithography. Biomaterials 25, 5415–5422 (2004)CrossRefGoogle Scholar
  49. 49.
    D.-H. Kim, P. Kim, I. Song, J.M. Cha, S.H. Lee, B. Kim, K.Y. Suh, Guided three-dimensional growth of functional cardiomyocytes on polyethylene glycol nanostructures. Langmuir 22, 5419–5426 (2006)CrossRefGoogle Scholar
  50. 50.
    C.C. Berry, M.J. Dalby, D. McCloy, S. Affrossman, The fibroblast response to tubes exhibiting internal nanotopography. Biomaterials 26, 4985–4992 (2005)CrossRefGoogle Scholar
  51. 51.
    M.A. Wood, D.O. Meredith, G.Rh. Owen, Steps toward a model nanotopography. IEEE Trans. Nanobios. 1, 133–140 (2002)CrossRefGoogle Scholar
  52. 52.
    C.C. Berry, S. Rudershausen, J. Teller, A.S.G. Curtis, The influence of elastin-coated 520-nm- and 20-nm-diameter nanoparticles on human fibroblasts in vitro. IEEE Trans. Nanobios. 1, 105–109 (2002)CrossRefGoogle Scholar
  53. 53.
    K.-B. Lee, S.-J. Park, C.A. Mirkin, J.C. Smith, M. Mrksich, Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002)CrossRefGoogle Scholar
  54. 54.
    M. Arnold, E.A. Cavalcanti-Adam, R. Glass, J. Blummel, W. Eck, M. Kantlehner, H. Kessler, J.P. Spatz, Activation of integrin function by nanopatterned adhesive interfaces. Chem. Phys. Chem. 5, 383–388 (2004)CrossRefGoogle Scholar
  55. 55.
    M.A. Wood, C.D.W. Wilkinson, A.S.G. Curtis, The effects of colloidal nanotopography on initial fibroblast adhesion and morphology. IEEE Trans. Nanobios. 5, 20–31 (2006)CrossRefGoogle Scholar
  56. 56.
    J.M. Rice, J.A. Hunt, J.A. Gallagher, P. Hanarp, D.S. Sutherland, J. Gold, Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro. Biomaterials 24, 4799–4818 (2003)CrossRefGoogle Scholar
  57. 57.
    A.-S. Andersson, F. Backhed, A. von Euler, A. Richter-Dahlfors, D. Sutherland, B. Kasemo, Nanoscale features influence epithelial cell morphology and cytokine production. Biomaterials 24, 3427–3436 (2003)CrossRefGoogle Scholar
  58. 58.
    A.-S. Andersson, P. Olsson, U. Lidberg, D. Sutherland, The effects of continuous and discontinuous groove edges on cell shape and alignment. Exp. Cell Res. 288, 177–188 (2003)CrossRefGoogle Scholar
  59. 59.
    J.O. Gallagher, K.F. McGhee, C.D.W. Wilkinson, M.O. Riehle, Interaction of animal cells with ordered nanotopography. IEEE Trans. Nanobios. 1, 24–28 (2002)CrossRefGoogle Scholar
  60. 60.
    A.S.G. Curtis, N. Gadegaard, M.J. Dalby, M.O. Riehle, C.D.W. Wilkinson, G. Aitchison, Cells react to nanoscale order and symmetry in their surroundings. IEEE Trans. Nanobios. 3, 61–65 (2004)CrossRefGoogle Scholar
  61. 61.
    M.J. Dalby, N. Gadegaard, M.O. Riehle, C.S.W. Wilkinson, A.S.G. Curtis, Investigating filopodia sensing using arrays of defined nano-pits down to 35 nm diameter in size. Int. J. Biochem. Cell Biol. 36, 2005–2015 (2004)CrossRefGoogle Scholar
  62. 62.
    E. Martines, K. McGhee, C. Wilkinson, A. Curtis, A parallel-plate flow chamber to study initial cell adhesion on a nanofeatured surface. IEEE Trans. Nanobios. 3, 90–95 (2004)CrossRefGoogle Scholar
  63. 63.
    S.C. Bayliss, P.J. Harris, L.D. Buckberry, C. Rousseau, Phosphate and cell growth on nanostructured semiconductors. J. Mater. Sci. Lett. 16, 737–740 (1997)CrossRefGoogle Scholar
  64. 64.
    S.C. Bayliss, R. Heald, D.I. Fletcher, L.D. Buckberry, The culture of mammalian cells on nanostructured silicon. Adv. Mater. 11, 318–321 (1999)CrossRefGoogle Scholar
  65. 65.
    S.C. Bayliss, L.D. Buckberry, I. Fletcher, M.J. Tobin, The culture of neurons on silicon. Sensor Actuat. A 74, 139–142 (1999)CrossRefGoogle Scholar
  66. 66.
    S.C. Bayliss, L.D. Buckberry, P.J. Harris, M. Tobin, Nature of the silicon-animal cell interface. J. Porous Mat. 7, 191–195 (2000)CrossRefGoogle Scholar
  67. 67.
    A.H. Mayne, S.C. Bayliss, P. Barr, M. Tobin, L.D. Buckberry, Biologically interfaced porous silicon devices. Phys. Stat. Sol. A 182, 505–513 (2000)CrossRefGoogle Scholar
  68. 68.
    A.V. Sapelkin, S.C. Bayliss, B. Unal, A. Charalambou, Interaction of B50 rat hippocampal cells with stain-etched porous silicon. Biomaterials 27, 842–846 (2006)CrossRefGoogle Scholar
  69. 69.
    P. Clark, P. Connolly, A.S.G. Curtis, J.A.T. Dow, C.D.W. Wilkinson, Cell guidance by ultrafine topography in vitro. J. Cell Sci. 99, 73–77 (1991)Google Scholar
  70. 70.
    B. Zhu, Q. Zhang, Q. Lu, Y. Xu, J. Yin, J. Hu, Z. Wang, Nanotopographical guidance of C6 glioma cell alignment and oriented growth. Biomaterials 25, 4215–4223 (2004)CrossRefGoogle Scholar
  71. 71.
    N.W. Karuri, S. Liliensiek, A.I. Teixeira, G. Abrams, S. Campbell, P.F. Nealey, C.J. Murphy, Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells. J. Cell Sci. 117, 3153–3164 (2004)CrossRefGoogle Scholar
  72. 72.
    B. Zhu, Q. Lu, J. Yin, J. Hu, Z. Wang, Alignment of osteoblast-like cells and cell-produced collagen matrix induced by nanogrooves. Tissue Eng. 11, 825–834 (2005)CrossRefGoogle Scholar
  73. 73.
    H. Baac, J.-H. Lee, J.M. Seo, T.H. Park, H. Chung, S.-D. Lee, S.J. Kim, Submicron-scale topographical control of cell growth using holographic surface relief grating. Mater. Sci. Eng. C 24, 209–212 (2004)CrossRefGoogle Scholar
  74. 74.
    E.K.F. Yim, R.M. Reano, S.W. Pang, A.F. Yee, C.S. Chen, K.W. Leong, Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26, 5405–5413 (2005)CrossRefGoogle Scholar
  75. 75.
    M.P. Mattson, R.C. Haddon, A.M. Rao, Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J. Mol. Neurosci. 14, 175–182 (2000)CrossRefGoogle Scholar
  76. 76.
    K.L. Elias, R.L. Price, T.J. Webster, Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials 23, 3279–3287 (2002)CrossRefGoogle Scholar
  77. 77.
    T.J. Webster, M.C. Waid, J.L. McKenzie, R.L. Price, J.U. Ejiofor, Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants. Nanotechnology 15, 48–54 (2004)CrossRefGoogle Scholar
  78. 78.
    J.L. McKenzie, M.C. Waid, R. Shi, T.J. Webster, Decreased functions of astrocytes on carbon nanofiber materials. Biomaterials 25, 1309–1317 (2004)CrossRefGoogle Scholar
  79. 79.
    R.L. Price, K. Ellison, K.M. Haberstroh, T.J. Webster, Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J. Biomed. Mater. Res. 70A, 129–138 (2004)CrossRefGoogle Scholar
  80. 80.
    H. Hu, Y. Ni, V. Montana, R.C. Haddon, V. Parpura, Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett. 4, 507–511 (2004)CrossRefGoogle Scholar
  81. 81.
    H. Hu, Y. Ni, S.K. Mandal, V. Montana, B. Zhao, R.C. Haddon, V. Parpura, Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J. Phys. Chem. B 109, 4285–4289 (2005)CrossRefGoogle Scholar
  82. 82.
    L. Zanello, B. Zhao, H. Hu, R.C. Haddon, Bone cell proliferation on carbon nanotubes. Nano Lett. 6, 562–567 (2006)CrossRefGoogle Scholar
  83. 83.
    R.A. MacDonald, B.F. Laurenzi, G. Viswanathan, P.M. Ajayan, J.P. Stegemann, Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J. Biomed. Mater. Res. 74A, 489–496 (2005)CrossRefGoogle Scholar
  84. 84.
    A.V. Liopo, M.P. Stewart, J. Hudson, J.M. Tour, T.C. Pappas, Biocompatibility of native and functionalized single-walled carbon nanotubes for neuronal interface. J. Nanosci. Nanotechnol. 6, 1365–1374 (2006)CrossRefGoogle Scholar
  85. 85.
    T.J. Webster, R.W. Siegel, R. Bizios, Osteoblast adhesion on nanophase ceramics. Biomaterials 20, 1221–1227 (1999)CrossRefGoogle Scholar
  86. 86.
    T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res. 51, 475–483 (2000)CrossRefGoogle Scholar
  87. 87.
    T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials 22, 1327–1333 (2001)CrossRefGoogle Scholar
  88. 88.
    A. Thapa, T.J. Webster, K.M. Haberstroh, Polymers with nano-dimensional surface features enhance bladder smooth muscle cell adhesion. J. Biomed. Mater. Res. 67A, 1374–1383 (2003)CrossRefGoogle Scholar
  89. 89.
    A. Thapa, D.C. Miller, T.J. Webster, K.M. Haberstroh, Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials 24, 2915–2926 (2003)CrossRefGoogle Scholar
  90. 90.
    D.C. Miller, A. Thapa, K.M. Haberstroh, T.J. Webster, Endothelial and vascular smooth muscle cell function on poly (lactic-co-glycolic acid) with nano-structured surface features. Biomaterials 25, 53–61 (2004)CrossRefGoogle Scholar
  91. 91.
    Y.W. Fan, F.Z. Cui, S.P. Hou, Q.Y. Xu, L.N. Chen, I.-S. Lee, Culture of neural cells on silicon wafers with nano-scale surface topograph. J. Neurosci. Methods 120, 17–23 (2002)CrossRefGoogle Scholar
  92. 92.
    T.A. Desai, Micro- and nanoscale structures for tissue engineering constructs. Med. Eng. Phys. 22, 595–606 (2000)CrossRefGoogle Scholar
  93. 93.
    A. Curtis, C. Wilkinson, Nanotechniques and approaches in biotechnology. Trends Biotechnol. 19, 97–101 (2001)CrossRefGoogle Scholar
  94. 94.
    A. Curtis, M. Riehle, Tissue engineering: the biophysical background. Phys. Med. Biol. 46, R47–R65 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringStevens Institute of TechnologyHobokenUSA
  2. 2.Mechanical and Aerospace Engineering DepartmentUniversity of CaliforniaLos AngelesUSA

Personalised recommendations