Skip to main content

Lotus Versus Rose: Biomimetic Surface Effects

Part of the Green Energy and Technology book series (GREEN)

Abstract

The Lotus and rose petal effects have become a subject of active investigation by scientists, as they involve different modes of the interaction of wetting with roughness. The contact angle (CA) and CA hysteresis are two parameters, which characterize the hydrophobicity/philicity of a solid surface. Lotus-effect surfaces have a high CA and low CA hysteresis. However, it was found recently that a high CA can coexist with strong adhesion between water and a solid surface (and high CA hysteresis) in the case of the so-called “rose petal effect.” It is clear now that wetting cannot be characterized by only the CA, since several modes or regimes of wetting of a rough surface can exist, including the Wenzel, Cassie, Lotus, and Petal regimes. This is due to the hierarchical structure of rough surfaces built of micro- and nanoscale roughness, so that a composite interface can exist at the microscale, while a homogeneous interface can exist at the nanoscale or vice versa. The understanding of the wetting of rough surfaces is important in order to design non-adhesive surfaces for various applications, including environmental.

Keywords

  • Contact Angle
  • Superhydrophobic Surface
  • Static Contact Angle
  • Contact Angle Hysteresis
  • Triple Line

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-23681-5_2
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-23681-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8

References

  1. B. Bhushan, Principles and Applications of Tribology (Wiley, New York, 1999)

    Google Scholar 

  2. B. Bhushan, Introduction to Tribology (Wiley, New York, 2002)

    Google Scholar 

  3. B. Bhushan, Springer Handbook of Nanotechnology, 3rd edn. (Springer, Heidelberg, 2010)

    CrossRef  Google Scholar 

  4. B. Bhushan, E.K. Her, Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir 26, 8207–8217 (2010)

    CrossRef  Google Scholar 

  5. B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1–108 (2011)

    CrossRef  Google Scholar 

  6. B. Bhushan, M. Nosonovsky, The rose petal effect and the modes of superhydrophobicity. Phil. Trans R. Soc. A 368, 4713–4728 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, Z. Barkay, Environmental scanning electron microscope study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates. Langmuir 23, 4378–4382 (2007)

    CrossRef  Google Scholar 

  8. E. Bormashenko, T. Stein, R. Pogreb, D. Aurbach, “Petal effect” on surfaces based on lycopodium: high-stick surfaces demonstrating high apparent contact angles. J. Phys. Chem. C 113, 5568–5572 (2009)

    CrossRef  Google Scholar 

  9. A. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)

    CrossRef  Google Scholar 

  10. F.M. Chang, S.J. Hong, Y.J. Sheng, H.K. Tsao, High contact angle hysteresis of superhydrophobic surfaces: hydrophobic defects. Appl. Phys. Lett. 95, 064102 (2009)

    CrossRef  Google Scholar 

  11. M.K. Dawood, H. Zheng, T.H. Liew, K.C. Leong, Y.L. Foo, R. Rajagopalan, S.A. Khan, W.K. Choi, Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces. Langmuir 27, 4126–4133 (2011)

    CrossRef  Google Scholar 

  12. L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24, 4114 (2008)

    CrossRef  Google Scholar 

  13. L. Feng, Y.A. Zhang, Y.Z. Cao, X.X. Ye, L. Jiang, The effect of surface microstructures and surface compositions on the wettabilities of flower petals. Soft Matter 7, 2977–2980 (2011)

    CrossRef  Google Scholar 

  14. L. Gao, T.J. McCarthy, Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization. Langmuir 24, 9184–9188 (2008)

    Google Scholar 

  15. M.H. Jin, X.L. Feng, L. Feng, T.L. Sun, J. Zhai, T.J. Li, L. Jiang, Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Adv. Mater. 17, 1977–1981 (2005)

    CrossRef  Google Scholar 

  16. Y.C. Jung, B. Bhushan, Contact angle, adhesion, and friction properties of micro- and nanopatterned polymers for superhydrophobicity. Nanotechnology 17, 4970–4980 (2006)

    CrossRef  Google Scholar 

  17. B. Krasovitski, A. Marmur, Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plane. Langmuir 21, 3881–3885 (2004)

    CrossRef  Google Scholar 

  18. H. Kusumaatmaja, J.M. Yeomans, Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Langmuir 23, 6019–6032 (2007)

    CrossRef  Google Scholar 

  19. W. Li, A. Amirfazli, Superhydrophobic surfaces: adhesive strongly to water? Adv. Mater. 19, 3421–3422 (2007)

    CrossRef  Google Scholar 

  20. M.J. Liu, L. Jiang, Switchable adhesion on liquid/solid interfaces. Adv. Func. Mater. 20, 3753–3764 (2010)

    MathSciNet  CrossRef  Google Scholar 

  21. M.J. Liu, Y.M. Zheng, J. Zhai, L. Jiang, Bioinspired super-antiwetting interfaces with special liquid–solid adhesion. Acc. Chem. Res. 43, 368–377 (2010)

    CrossRef  Google Scholar 

  22. G. McHale, All solids, including Teflon, are hydrophilic (to some extent), but some have roughness induced hydrophobic tendencies. Langmuir 25, 7185–7187 (2009)

    CrossRef  Google Scholar 

  23. M. Nosonovsky, Model for solid–liquid and solid–solid friction for rough surfaces with adhesion hysteresis. J. Chem. Phys. 126, 224701 (2007)

    CrossRef  Google Scholar 

  24. M. Nosonovsky, On the range of applicability of the wenzel and cassie equations. Langmuir 23, 9919–9920 (2007)

    CrossRef  Google Scholar 

  25. M. Nosonovsky, Entropy in tribology: in search of applications. Entropy 12, 1345–1390 (2010)

    CrossRef  Google Scholar 

  26. M. Nosonovsky, B. Bhushan, Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett. 7, 2633–2637 (2007)

    CrossRef  Google Scholar 

  27. M. Nosonovsky, B. Bhushan, Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater. Sci. Eng. R 58, 162–193 (2007)

    CrossRef  Google Scholar 

  28. M. Nosonovsky, B. Bhushan, Hierarchical roughness makes superhydrophobic surfaces stable. Microelectron. Eng. 84, 382–386 (2007)

    CrossRef  Google Scholar 

  29. M. Nosonovsky, B. Bhushan, Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Ultramicroscopy 107, 969–979 (2007)

    CrossRef  Google Scholar 

  30. M. Nosonovsky, B. Bhushan, Biologically-inspired surfaces: broadening the scope of roughness. Adv. Func. Mater. 18, 843–855 (2008)

    CrossRef  Google Scholar 

  31. M. Nosonovsky, B. Bhushan, Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing. J. Phys. Condens. Matter 20, 395005 (2008)

    CrossRef  Google Scholar 

  32. M. Nosonovsky, B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics (Springer, Heidelberg, 2008)

    MATH  Google Scholar 

  33. M. Nosonovsky, B. Bhushan, Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci. 14, 270–280 (2010)

    CrossRef  Google Scholar 

  34. A. Tonosaki, T. Nishide, Novel petal effect of hafnia films prepared in an aqueous solution and containing hydroxy acids. Appl. Phys. Express 3, 125801 (2010)

    CrossRef  Google Scholar 

  35. S. Vedantam, M.V. Panchagnula, Phase field modeling of hysteresis in sessile drops. Phys. Rev. Lett. 99, 176102 (2007)

    CrossRef  Google Scholar 

  36. S. Wang, L. Jiang, Definition of superhydrophobic states. Adv. Mater. 19, 3423–3424 (2007)

    CrossRef  Google Scholar 

  37. R.N. Wenzel, Resistance of solid surfaces to wetting by water. Indust. Eng. Chem. 28, 988–994 (1936)

    CrossRef  Google Scholar 

  38. G. Whyman, E. Bormashenko, T. Stein, The rigorous derivation of young, cassie–baxter and wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem. Phys. Lett. 450, 355–359 (2008)

    CrossRef  Google Scholar 

  39. F. Xia, L. Jiang, Bio-inspired, smart, multiscale interfacial materials. Adv. Mater. 20, 2842–2858 (2008)

    CrossRef  Google Scholar 

Download references

Acknowledgment

Michael Nosonovsky acknowledges the support of the UWM Research Growth Initiative grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nosonovsky, M., Bhushan, B. (2012). Lotus Versus Rose: Biomimetic Surface Effects. In: Nosonovsky, M., Bhushan, B. (eds) Green Tribology. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23681-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23681-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23680-8

  • Online ISBN: 978-3-642-23681-5

  • eBook Packages: EngineeringEngineering (R0)