B. Bhushan, Principles and Applications of Tribology (Wiley, New York, 1999)
Google Scholar
B. Bhushan, Introduction to Tribology (Wiley, New York, 2002)
Google Scholar
B. Bhushan, Springer Handbook of Nanotechnology, 3rd edn. (Springer, Heidelberg, 2010)
CrossRef
Google Scholar
B. Bhushan, E.K. Her, Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir 26, 8207–8217 (2010)
CrossRef
Google Scholar
B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1–108 (2011)
CrossRef
Google Scholar
B. Bhushan, M. Nosonovsky, The rose petal effect and the modes of superhydrophobicity. Phil. Trans R. Soc. A 368, 4713–4728 (2010)
MathSciNet
MATH
CrossRef
Google Scholar
E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, Z. Barkay, Environmental scanning electron microscope study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates. Langmuir 23, 4378–4382 (2007)
CrossRef
Google Scholar
E. Bormashenko, T. Stein, R. Pogreb, D. Aurbach, “Petal effect” on surfaces based on lycopodium: high-stick surfaces demonstrating high apparent contact angles. J. Phys. Chem. C 113, 5568–5572 (2009)
CrossRef
Google Scholar
A. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)
CrossRef
Google Scholar
F.M. Chang, S.J. Hong, Y.J. Sheng, H.K. Tsao, High contact angle hysteresis of superhydrophobic surfaces: hydrophobic defects. Appl. Phys. Lett. 95, 064102 (2009)
CrossRef
Google Scholar
M.K. Dawood, H. Zheng, T.H. Liew, K.C. Leong, Y.L. Foo, R. Rajagopalan, S.A. Khan, W.K. Choi, Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces. Langmuir 27, 4126–4133 (2011)
CrossRef
Google Scholar
L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24, 4114 (2008)
CrossRef
Google Scholar
L. Feng, Y.A. Zhang, Y.Z. Cao, X.X. Ye, L. Jiang, The effect of surface microstructures and surface compositions on the wettabilities of flower petals. Soft Matter 7, 2977–2980 (2011)
CrossRef
Google Scholar
L. Gao, T.J. McCarthy, Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization. Langmuir 24, 9184–9188 (2008)
Google Scholar
M.H. Jin, X.L. Feng, L. Feng, T.L. Sun, J. Zhai, T.J. Li, L. Jiang, Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Adv. Mater. 17, 1977–1981 (2005)
CrossRef
Google Scholar
Y.C. Jung, B. Bhushan, Contact angle, adhesion, and friction properties of micro- and nanopatterned polymers for superhydrophobicity. Nanotechnology 17, 4970–4980 (2006)
CrossRef
Google Scholar
B. Krasovitski, A. Marmur, Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plane. Langmuir 21, 3881–3885 (2004)
CrossRef
Google Scholar
H. Kusumaatmaja, J.M. Yeomans, Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Langmuir 23, 6019–6032 (2007)
CrossRef
Google Scholar
W. Li, A. Amirfazli, Superhydrophobic surfaces: adhesive strongly to water? Adv. Mater. 19, 3421–3422 (2007)
CrossRef
Google Scholar
M.J. Liu, L. Jiang, Switchable adhesion on liquid/solid interfaces. Adv. Func. Mater. 20, 3753–3764 (2010)
MathSciNet
CrossRef
Google Scholar
M.J. Liu, Y.M. Zheng, J. Zhai, L. Jiang, Bioinspired super-antiwetting interfaces with special liquid–solid adhesion. Acc. Chem. Res. 43, 368–377 (2010)
CrossRef
Google Scholar
G. McHale, All solids, including Teflon, are hydrophilic (to some extent), but some have roughness induced hydrophobic tendencies. Langmuir 25, 7185–7187 (2009)
CrossRef
Google Scholar
M. Nosonovsky, Model for solid–liquid and solid–solid friction for rough surfaces with adhesion hysteresis. J. Chem. Phys. 126, 224701 (2007)
CrossRef
Google Scholar
M. Nosonovsky, On the range of applicability of the wenzel and cassie equations. Langmuir 23, 9919–9920 (2007)
CrossRef
Google Scholar
M. Nosonovsky, Entropy in tribology: in search of applications. Entropy 12, 1345–1390 (2010)
CrossRef
Google Scholar
M. Nosonovsky, B. Bhushan, Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett. 7, 2633–2637 (2007)
CrossRef
Google Scholar
M. Nosonovsky, B. Bhushan, Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater. Sci. Eng. R 58, 162–193 (2007)
CrossRef
Google Scholar
M. Nosonovsky, B. Bhushan, Hierarchical roughness makes superhydrophobic surfaces stable. Microelectron. Eng. 84, 382–386 (2007)
CrossRef
Google Scholar
M. Nosonovsky, B. Bhushan, Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Ultramicroscopy 107, 969–979 (2007)
CrossRef
Google Scholar
M. Nosonovsky, B. Bhushan, Biologically-inspired surfaces: broadening the scope of roughness. Adv. Func. Mater. 18, 843–855 (2008)
CrossRef
Google Scholar
M. Nosonovsky, B. Bhushan, Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing. J. Phys. Condens. Matter 20, 395005 (2008)
CrossRef
Google Scholar
M. Nosonovsky, B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics (Springer, Heidelberg, 2008)
MATH
Google Scholar
M. Nosonovsky, B. Bhushan, Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci. 14, 270–280 (2010)
CrossRef
Google Scholar
A. Tonosaki, T. Nishide, Novel petal effect of hafnia films prepared in an aqueous solution and containing hydroxy acids. Appl. Phys. Express 3, 125801 (2010)
CrossRef
Google Scholar
S. Vedantam, M.V. Panchagnula, Phase field modeling of hysteresis in sessile drops. Phys. Rev. Lett. 99, 176102 (2007)
CrossRef
Google Scholar
S. Wang, L. Jiang, Definition of superhydrophobic states. Adv. Mater. 19, 3423–3424 (2007)
CrossRef
Google Scholar
R.N. Wenzel, Resistance of solid surfaces to wetting by water. Indust. Eng. Chem. 28, 988–994 (1936)
CrossRef
Google Scholar
G. Whyman, E. Bormashenko, T. Stein, The rigorous derivation of young, cassie–baxter and wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem. Phys. Lett. 450, 355–359 (2008)
CrossRef
Google Scholar
F. Xia, L. Jiang, Bio-inspired, smart, multiscale interfacial materials. Adv. Mater. 20, 2842–2858 (2008)
CrossRef
Google Scholar