Wind Turbine Tribology

  • Elon J. Terrell
  • William M. Needelman
  • Jonathan P. Kyle
Part of the Green Energy and Technology book series (GREEN)


Wind power is of increasing interest in society due to its prospects as an environmentally friendly source of renewable energy. The use of wind turbines to extract electrical energy from wind can be dated back to the late-1800s, with the 12 kW windmill generator by Charles Brush, as well as the mid-1900s, with the 1250 kW Smith-Putnam wind turbine. Developments in the wind industry were encouraged by the oil crisis in 1973.


Wind Turbine Rotor Blade Gear Tooth Rolling Element Helical Gear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B.C. Babu, K.B. Mohanty, Doubly-fed induction generator for variable speed wind energy conversion systems–modeling and simulation. Int. J. Comput. Electr. Eng. 2(1), 141–147 (2010)Google Scholar
  2. 2.
    H. Chandler (ed.), Wind Energy–The Facts, in European Wind Energy Association (2003)Google Scholar
  3. 3.
    Y. Amirat, M.E.H. Benbouzid, B. Bensaker, R. Wamkeue, Condition Monitoring and ault Diagnosis in Wind Energy Conversion Systems: A Review in Electric Machines and Drives Conference. IEMDC ‘07, IEEE International, 2007Google Scholar
  4. 4.
    Global Wind 2009 Report, Global Wind Energy Council, 2010Google Scholar
  5. 5.
    20% Wind Energy by 2030, U.S. Department of Energy Technical Report, 2008Google Scholar
  6. 6.
    Strategic research agenda: market deployment strategy from 2008 to 2030, European Wind Energy Technology Platform, 2008Google Scholar
  7. 7.
    Mid and long range plan for renewable energy development, Chinese Committee for National Development and Reform, 2007Google Scholar
  8. 8.
    B. Lu, Y. Li, X. Wu, Z. Yang, in A review of recent advances in wind turbine condition monitoring and fault diagnosis (Power Electronics and Machines in Wind Applications, PEMWA, IEEE, 2009), pp. 1–7Google Scholar
  9. 9.
    2009 wind technologies market report, U.S. Department of Energy, 2010Google Scholar
  10. 10.
    J. Ribrant, L. Bertling, Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005. IEEE Power Engineering Society General Meeting, 2007Google Scholar
  11. 11.
    E.J. Terrell, W.M. Needelman, J.K. Kyle, Current and future tribological challenges in wind turbine power systems, in STLE/ASME international joint tribology conference, ASME IJTC2009-15220, 2009Google Scholar
  12. 12.
    Wind Energy Siting Handbook, American Wind Energy Association, 2008Google Scholar
  13. 13.
    L. Mumper, Wind turbine technology turns on bearings and condition monitoring. Utilities Manager, 2006Google Scholar
  14. 14.
    M. Islam, D.S.K. Ting, A. Fartaj, Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renew. Sustain. Energy Rev. 12(4), 1087–1109 (2008)CrossRefGoogle Scholar
  15. 15.
    A.C. Hansen, C.P. Butterfield, Aerodynamics of horizontal-axis wind turbines. Annu. Rev. Fluid Mech. 25(1), 115–149 (1993)CrossRefGoogle Scholar
  16. 16.
    S. Oerlemans, P. Sijtsma, B. Méndez López, Location and quantification of noise sources on a wind turbine. J. Sound Vib. 299(4–5), 869–883 (2007)CrossRefGoogle Scholar
  17. 17.
    A.D. Hansen, L.H. Hansen, Wind turbine concept market penetration over 10 years (1995–2004). Wind Energy 10, 81–97 (2007)CrossRefGoogle Scholar
  18. 18.
    L.H. Hansen, L. Helle, F. Blaabjerg, E. Ritchie, S. Munk-Nielsen, H. Binder, P. Soerensen, B. Bak-Jensen, Conceptual survey of generators and power electronics for wind turbines. Riso National Lab Technical Report, 2001Google Scholar
  19. 19.
    T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy (Wiley, NY, 2001)Google Scholar
  20. 20.
    A. Petersson, Analysis, modeling and control of doubly-fed induction generators for wind turbines, in Department of Energy and Environment, Chalmers University of Technology, 2005Google Scholar
  21. 21.
    H. Li, Z. Chen, Overview of different wind generator systems and their comparisons. Renew. Power Gener. IET 2(2), 123–138 (2008)CrossRefGoogle Scholar
  22. 22.
    H. Polinder, F.F.A. van der Pijl, G.J. de Vilder, P.J. Tavner, Comparison of direct-drive and geared generator concepts for wind turbines. Energy conversion. IEEE Trans 21(3), 725–733 (2006)Google Scholar
  23. 23.
    G.L. Johnson, Wind Energy Systems (Prentice-Hall, Englewood Cliffs, 1985)Google Scholar
  24. 24.
    D.S. Zinger, E. Muljadi, Annualized wind energy improvement using variable speeds. IEEE Trans. Indus. Appl. 33(6), 1444–1447 (1997)CrossRefGoogle Scholar
  25. 25.
    S.A. Akdag, Ö. Güler, Comparison of wind turbine power curve Models, in International Renewable Energy Congress, Sousse, Tunisia, 2010Google Scholar
  26. 26.
    C. Zhe, J.M. Guerrero, F. Blaabjerg, A review of the state of the art of power electronics for wind turbines. Power Electron. IEEE Trans. 24(8), 1859–1875 (2009)CrossRefGoogle Scholar
  27. 27.
    J. Peeters, Simulation of Drive Train Loads in a Wind Turbine (Katholieke Universiteit Leuven, Lueven, 2006)Google Scholar
  28. 28.
    E. Hau, Wind Turbines (Springer-Verlag, Berlin, 2006)Google Scholar
  29. 29.
    W. Musial, S. Butterfield, B. McNiff, Improving wind turbine gearbox reliability, in Proceedings of the European Wind Energy Conference, Milan, Italy, 2007Google Scholar
  30. 30.
    H. Slootweg, E. De Vries, Inside wind turbines-fixed vs variable speed. Renew. Energy World 6(1), 3041 (2003)Google Scholar
  31. 31.
    American Gear Manufacturer’s Association, Standard for design and specification of gearboxes for wind turbines, ANSI/AGMA/AWEA 6006-A03, 2004Google Scholar
  32. 32.
    H. Stiesdal, The Wind Turbine Components and Operation (Bonus-Info, Denmark, 1999)Google Scholar
  33. 33.
    K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)zbMATHGoogle Scholar
  34. 34.
    D.H. Buckley, Surface Effects in Adhesion, Friction, Wear, and Lubrication (Elsevier, Amsterdam, 1981)Google Scholar
  35. 35.
    M.N. Kotzalas, G.L. Doll, Tribological advancements for reliable wind turbine performance. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 368(1929), 4829–4850 (2010)CrossRefGoogle Scholar
  36. 36.
    T.A. Harris, M.N. Kotzalas, Essential Concepts of Bearing Technology (Taylor and Francis, Boca Raton, 2007)Google Scholar
  37. 37.
    K. Iso, A. Yokouchi, H. Takemura, Research work for clarifying the mechanism of white structure flaking and extending the life of bearings. in SAE Technical Paper 2005-01-1868, Society of Automotive Engineers, 2005Google Scholar
  38. 38.
    M. Kohara, T. Kawamura, M. Egami, Study on mechanism of hydrogen generation from lubricants. Tribol. Trans. 46, 5360 (2006)Google Scholar
  39. 39.
    A.V. Olver, The mechanism of rolling contact fatigue: an update. J. Eng. Tribol. 219(5), 313–330 (2005)CrossRefGoogle Scholar
  40. 40.
    G. Lundberg, A.Z. Palmgren, Dynamic capacity of rolling bearings. Proc. R. Swed. Acad. Eng. Sci. 196, 50 (1947)Google Scholar
  41. 41.
    E.V. Zaretsky, Palmgren revisited–a basis for bearing life prediction. Lubr. Eng. 54, 1823 (1998)Google Scholar
  42. 42.
    F.T. Barwell, Report on papers in Session 3 (lubrication), in Proceedings of the International Conference on Gearing (1958), pp. 23–25Google Scholar
  43. 43.
    D. Dowson, G.R. Higginson, Elastohydrodyanmic Lubrication, 2nd edn. (1977)Google Scholar
  44. 44.
    A.N. Grubin, Investigation of the Contact of Machine Components (Central Scientific Research Institute for Technology and Mechanics, Moscow, 1949), Book 30Google Scholar
  45. 45.
    R.D. Britton, C.D. Elcoate, M.P. Alanou, H.P. Evans, R.W. Snidle, Effect of surface finish on gear tooth friction. J. Tribol. 122(1), 354–360 (2000)CrossRefGoogle Scholar
  46. 46.
    A.N. Grubin, Fundamentals of the hydrodynamic theory of lubrication of heavily loaded cylindrical surfaces. Investigation of the Contact Machine Components, No. 30, 115–166 (1949)Google Scholar
  47. 47.
    D. Dowson, G.R. Higginson, A numerical solution to the elasto-hydrodynamic problem. J. Mech. Eng. Sci. 1(1), 6–15 (1959)CrossRefGoogle Scholar
  48. 48.
    D. Dowson, G.R. Higginson, Elastohydrodynamic Lubrication (Pergamon Press, Oxford, 1977)Google Scholar
  49. 49.
    S. Li, A. Kahraman, Prediction of spur gear mechanical power losses using a transient elastohydrodynamic lubrication model. Tribol. Trans. 53, 554–563 (2010)CrossRefGoogle Scholar
  50. 50.
    R. Gohar, Elastohydrodynamics (Wiley, New York, 1988)zbMATHGoogle Scholar
  51. 51.
    R. Errichello, Friction, lubrication, and wear of gears, in ASM Handbook Friction, Lubrication, and Wear Technology, vol. 18, ed. by P. Blau (ASM International, Materials Park, Ohio, 1992), pp. 535–545Google Scholar
  52. 52.
    T.E. Tallian, Simplified contact fatigue life prediction model–part I: review of published models. J. Tribol. 114(2), 207–213 (1992)CrossRefGoogle Scholar
  53. 53.
    G. Stachowiak, A.W. Batchelor, Engineering Tribology (Elsevier, Oxford, 2005)Google Scholar
  54. 54.
    G.L. Doll, B.K. Osborn, Engineering surfaces of precision steel components. Proc. Annu. Tech. Conf. Soc. Vac. Coaters 44, 78–84 (2001)Google Scholar
  55. 55.
    G.L. Doll, C.R. Ribaudo, R.D. Evans, Engineered surfaces for steel rolling element bearings and gears. Mater. Sci. Technol. 2, 367–374 (2004)Google Scholar
  56. 56.
    A. Ragheb, M. Ragheb, Wind turbine gearbox technologies, in International Nuclear and Renewable Energy Conference (INREC10) (Amman, Jordan, 2010)Google Scholar
  57. 57.
    R.W. Hyers, J.G. Mcgowan, K.L. Sullivan, J.F. Manwell, B.C. Syrett, Condition monitoring and prognosis of utility scale wind turbines. Energy Mater.: Mater. Sci. Eng. Energy Syst. 1(3), 187–203 (2006)CrossRefGoogle Scholar
  58. 58.
    F.L. Litvin, A. Fuentes, Gear Geometry Applied Theory (Cambridge University Press, Cambridge, 2004)zbMATHCrossRefGoogle Scholar
  59. 59.
    J.E. higley, Mechanical Engineering Design (McGraw-Hill, New York, 1963)Google Scholar
  60. 60.
    P. Lynwander, Gear Drive Systems: Design and Application (Marcel Dekker, NY, 1983)Google Scholar
  61. 61.
    F.L. Litvin, A. Fuentes, I. Gonzalez-Perez, L. Carvenali, K. Kawasaki, R.F. Handschuh, Modified involute helical gears: computerized design simulation of meshing and stress analysis. Comput. Methods Appl. Mech. Eng. 192(33–34), 3619–3655 (2003)zbMATHCrossRefGoogle Scholar
  62. 62.
    J. Kleemola, A. Lehtovaara, Experimental simulation of gear contact along the line of action. Tribol. Int. 42, 1453–1459 (2009)CrossRefGoogle Scholar
  63. 63.
    G.M. Maitra, Handbook of Gear Design (Tata McGraw-Hill, New Delhi, 1997)Google Scholar
  64. 64.
    A.H. Elkholy, Tooth load sharing in high contact ratio spur gears. J. Mech. Trans. Autom. Des. 107(1), 11–16 (1985)MathSciNetCrossRefGoogle Scholar
  65. 65.
    S. Avinash, Application of a system level model to study the planetary load sharing behavior. J. Mech. Des. 127(3), 469–476 (2005)CrossRefGoogle Scholar
  66. 66.
    C.R.M. Rao, G. Muthuveerappan, Finite element modelling and stress analysis of helical gear teeth. Comput. Struct. 49(6), 1095–1106 (1993)CrossRefGoogle Scholar
  67. 67.
    B.R. Hohn, K. Michaelis, Influence of oil temperature on gear failures. Tribol. Int. 37(2), 103–109 (2004)CrossRefGoogle Scholar
  68. 68.
    H. Blok, Les temperatures de surface dans les conditions de graissage sons pression extreme, in Second World Petroleum Congress, Paris, 1937Google Scholar
  69. 69.
    E.E. Shipley, Failure analysis of coarse-pitch, hardened, and ground gears. Paper No. P229.26, (American Gear Manufacturers Association, Alexandria, 1982), pp. 1–24Google Scholar
  70. 70.
    S. Tanaka, Appreciable increases in surface durability of gear pairs with mirror-like finish, Paper No. 84-DET-223, (American Society of Mechanical Engineers, Alexandria, 1984), pp. 1–8Google Scholar
  71. 71.
    X. Ai, Effect of debris contamination on the fatigue life of roller bearings. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 215(6), 563–575 (2001)CrossRefGoogle Scholar
  72. 72.
    I. Allison, E. Hearn, A new look at the bending strength of gear teeth. Exp. Mech. 20(7), 217–225 (1980)CrossRefGoogle Scholar
  73. 73.
    J. Hiremagalur, B. Ravani, Effect of backup ratio on root stresses in spur gear design. Mech. Based Des. Struct. Mach.: Int. J. 32(4), 423–440 (2004)CrossRefGoogle Scholar
  74. 74.
    W. Lewis, Investigation of the strength of gear teeth, in Proceedings of Engineers Club(1892), pp. 16–23Google Scholar
  75. 75.
    T.J. Dolan, E.L. Broghamer, A photoelastic study of stresses in gear tooth fillets. University of Illinois Bulletin, vol 355 (1942)Google Scholar
  76. 76.
    B.W. Kelley, R. Pedersen, The beam strength of modern gear tooth design. Transactions of the S.A.E., 1957Google Scholar
  77. 77.
    X.Q. Peng, L. Geng, W. Liyan, G.R. Liu, K.Y. Lam, A stochastic finite element method for fatigue reliability analysis of gear teeth subjected to bending. Comput. Mech. 21(3), 253–261 (1998)zbMATHCrossRefGoogle Scholar
  78. 78.
    J.D. Andrews, A finite element analysis of bending stresses induced in external and internal involute spur gears. J. Strain Anal. Eng. Des. 26(3), 153–163 (1991)CrossRefGoogle Scholar
  79. 79.
    M.A. Miner, Cumulative damage in fatigue. J. Appl. Mech. 67, A159–A164 (1945)Google Scholar
  80. 80.
    A.Z. Palmgren, Die Lebensdauer von Kugelagern. 2 ver Deutsch Ing 68, 339–341 (1924)Google Scholar
  81. 81.
    T.A. Harris, J.H. Rumbarger, C.P. Butterfield, Wind turbine design guideline DG03: yaw and pitch rolling bearing life, NREL Technical Report No. NREL/TP-500-42362, 2009Google Scholar
  82. 82.
    T. Senjyu, R. Sakamoto, N. Urasaki, T. Funabashi, H. Fujita, H. Sekine, Output power leveling of wind turbine generator for all operating regions by pitch angle control. IEEE Trans. Energy Convers. 21(2), 467–475 (2006)CrossRefGoogle Scholar
  83. 83.
    J. Aguirrebeitia, R. Aviles, I.F.d. Bustos, M. Abasolo, Calculation of general static load-carrying capacity for the design of four-contact-point slewing bearings. J. Mech. Des. 132(6), P064501 (2010)CrossRefGoogle Scholar
  84. 84.
    W.J. Bartz, Tribological aspects of wind power plants, in Proceedings of the World Tribology Congress III, Washington, D.C., USA, 2005Google Scholar
  85. 85.
    J.C. Enthoven, H.A. Spikes, Visual observation of the process of scuffing, in Lubricants and Lubrication, Proceedings of the 21st Leeds-Lyon Symposium on Tribology (1995), pp. 487–494Google Scholar
  86. 86.
    G.K. Nikas, R.S. Sayles, E. Ioannides, Effects of debris particles in sliding/rolling elastohydrodynamic contacts. J. Eng. Tribol. 212(5), 333–343 (1998)CrossRefGoogle Scholar
  87. 87.
    G. Xu, F. Sadeghi, J.D. Cogdell, Debris denting effects on elastrohydrodynamic lubricated contacts. Trans. ASME J. Tribol. 119, 579–587 (1997)CrossRefGoogle Scholar
  88. 88.
    X. Ai, H.S. Cheng, The influence of moving dent on point EHL contacts. Tribol. Trans. 37(2), 323–335 (1994)CrossRefGoogle Scholar
  89. 89.
    S. Butterfield, R. Errichello, B. McNiff, Wind turbine gearbox issues and lubrication, in IJTC2008-71361, 2008Google Scholar
  90. 90.
    M.N. Kotzalas, W.M. Needelman, D.R. Lucas, G.L. LaVallee, Improving wind turbine gearbox life, in AWEA Windpower Conference, Houston, 2008Google Scholar
  91. 91.
    R.E. Cantley, The effect of water in lubricating oil on bearing fatigue life. ASLE Trans. 20(3), 244–248 (1977)CrossRefGoogle Scholar
  92. 92.
    E.V. Zaretsky (ed.), Life Factors for Rolling Bearings (Society of Tribologists and Lubrication Engineers, Park Ridge, 1992)Google Scholar
  93. 93.
    E. Abner, in Handbook of Lubrication, ed. by E.R. Booser, Lubricant deterioration in service (CRC Press, Boca Raton, 1983)Google Scholar
  94. 94.
    W.M. Needelman, M.A. Barris, and G.L. LaVallee, Contamination Control for Wind Turbine Gearboxes. Power EngineeringGoogle Scholar
  95. 95.
    Hydraulic fluid power—Filters—Multi-pass method for evaluating filtration performance of a filter element. ISO 16889. 2008: International Organization for StandardizationGoogle Scholar
  96. 96.
    W.M. Needelman, M.A. Barris and G.L. LaVallee, Contamination control for wind turbine gearboxes. Power Engineering, 2009Google Scholar
  97. 97.
    W.M. Needelman, E.V. Zaretsky, New equations show oil filtration effect on bearing life. Power Transm. Des. 33(8), 65–68 (1991)Google Scholar
  98. 98.
    W.M. Needelman, E.V. Zaretsky, Recalibrated equations for determining effect of oil filtration on rolling bearing life, in STLE Annual Meeting, Orlando (2009) Google Scholar
  99. 99.
    W.M. Needelman, M.A. Barris, G.L. LaVallee, Reducing cost of operation in harsh conditions with new generation filters, in International Fluid Power Exposition, Las Vegas (2011) Google Scholar
  100. 100.
    G.L. LaVallee, W.M. Needelman, Dry air blankets: An effective and economical method for eradicating water contamination. Part I: principles of operation, in STLE Annual Meeting, Las Vegas (2010)Google Scholar
  101. 101.
    C.S. Gray, S.J. Watson, Physics of failure approach to wind turbine condition based maintenance. Wind Energy 13(5), 395–405 (2010)CrossRefGoogle Scholar
  102. 102.
    Z. Hameed, Y.S. Hong, Y.M. Cho, S.H. Ahn, C.K. Song, Condition moitoring and fault detection of wind turbines and related algorithms: a review. Renew. Sustain. Energy Rev. 13(1), 1–39 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Elon J. Terrell
    • 1
  • William M. Needelman
    • 2
  • Jonathan P. Kyle
    • 1
  1. 1.Mechanical Engineering DepartmentColumbia UniversityNew YorkUSA
  2. 2.Donaldson Company, IncHuntingtonUSA

Personalised recommendations