Natural Oil-Based Lubricants

  • K. R. Sathwik Chatra
  • N. H. Jayadas
  • Satish V. Kailas
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Lubricants and lubrication have been inherent in a machine ever since man invented machines. It was water and natural esters like vegetable oils and animal fats that were used during the early era of machines. During the late 1800s, the development of the petrochemical industry put aside the application of natural lubricants for reasons including its stability and economics. The growing awareness of the lower biodegradability and higher toxicity of petrochemical-based lubricants created the requirements of the best possible protection of nature. The recent research on the adverse effects of mineral oil-based lubricants on the environment has reconfirmed its role in polluting groundwater for up to 100 years and its effects on reducing the growth of trees and the life span of aquatic life [1]. This awareness, of the use of ecofriendly processes and materials, increases interest in Tribology for the use of natural esters in lubrication processes [2]. The development of the retro parade attitude in the lubricant industry and its customers with more environmental awareness, keen to prefer products which do not diminish the world’s finite resource of mineral hydrocarbons and which have a minimal adverse effect on the environment, created an opportunity to use naturally available ecofriendly lubricants [3]. The potential candidates for ecofriendly lubricants include vegetable oils, animal fats and synthetic esters. Although animal fats are also considered biodegradable the most common mineral oil substitutes consist of vegetable oils and synthetic esters [4]. The economical concerns and price stability edge the potential use of vegetable oils as lubricants over synthetic esters. With the notion that we live on a planet with finite resources, we have to think about the coming generations and work for sustainable development in the field of Tribology. This chapter has key concepts like the advantageous and inherent limitations of vegetable oils over mineral oils, possible application of vegetable oil in the field of Tribology, composition and structure of vegetable oils and use of different vegetable oils as bioderived lubricants with their properties and functions.

Keywords

Pour Point Pressure Differential Scanning Calorimetry Formyl Stearate Oleic Acid Methyl Ester Fish Embryo Toxicity Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W.J. Bartz, Lubricants and the environment. Tribol. Int. 31(1–3), 35–47 (1998)CrossRefGoogle Scholar
  2. 2.
    P.V. Joseph, S. Deepak, D.K. Sharma, Study of some non-edible vegetable oils of Indian origin for lubricant application. J. Synth. Lubr. 24, 181–197 (2007)CrossRefGoogle Scholar
  3. 3.
    B. Wilson, Lubricants and functional fluids from renewable sources. Ind. Lubr. Technol. 50(1), 6–15 (1998). (January/February)CrossRefGoogle Scholar
  4. 4.
    R.L. Goyan, R.E. Melley, P.A. Wissner, W.C. Ong, Biodegradable lubricants. Lubr. Eng. 54(7), 10–17 (1998)Google Scholar
  5. 5.
    L. Lazzeri, M. Mazzoncini, A. Rossi, E. Balducci, G. Bartolini, L. Giovannelli, R. Pedriali, R. Petroselli, G. Patalano, G. Agnoletti, A. Borgioli, B. Croce, L. D’Avino, Biolubricants for the textile and tannery industries as an alternative to conventional mineral oils: an application experience in the Tuscany province. Ind. Crops Prod. 24, 280–291 (2006)CrossRefGoogle Scholar
  6. 6.
    C.W. Lea, European development of lubricants from renewable sources. Ind. Lubr. Tribol. 54(6), 268–274 (2002)CrossRefGoogle Scholar
  7. 7.
    A. Pettersson, High-performance base fluids for environmentally adapted lubricants. Tribol. Int. 40, 638–645 (2007)CrossRefGoogle Scholar
  8. 8.
    S.Z. Erhan, B.K. Sharma, Z. Liu, A. Adhvaryu, Lubricant base stock potential of chemically modified vegetable oils. J. Agric. Food Chem. 56(19), 8919–8925 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Asadauskas, J.H. Perez, J.L. Duda, Lubrication properties of castor oil–potential base stock for biodegradable. Lubr. Eng. 53(12), 35–40 (1997)Google Scholar
  10. 10.
    H.H. Masjuki, M.A. Maleque, A. Kubo, T. Nonaka, Palm oil and mineral oil based lubricants—their tribological and emission performance. Tribol. Int. 32, 305–314 (1999)CrossRefGoogle Scholar
  11. 11.
    M.A. Maleque, H.H. Masjuki, S.M. Sapuan, Vegetable based biodegradable lubricating oil additives. Ind. lubr. technol. 55(3), 137–143 (2003)CrossRefGoogle Scholar
  12. 12.
    S.Z. Erhan, S. Asadauskas, Lubricant basestocks from vegetable oils. Ind. Crops Prod. 11, 277–282 (2000)CrossRefGoogle Scholar
  13. 13.
    V.K. Bhatia, A. Chaudhry, G.A. Sivasankaran, R.P.S. Bisht, M. Kashyap, Modification of jojoba oil for lubricant formulations. JAOCS 67(1), 1–7 (1990)CrossRefGoogle Scholar
  14. 14.
    O.N. Anand, V.K. Chhibber, Vegetable oil derivatives: environment-friendly lubricants and fuels. J. Synth. Lubr. 23, 91–107 (2006)CrossRefGoogle Scholar
  15. 15.
    Y.M. Shashidhara, S.R. Jayaram, Vegetable oils as a potential cutting fluid—an evolution. Tribol. Int. 43, 1073–1081 (2010)CrossRefGoogle Scholar
  16. 16.
    I.I. Ştefanescu, C. Calomir, G. Chirita, On the future of biodegradable vegetable lubricants used for industrial trybosystems. The annals of university “dunărea de jos” of galaţi fascicle VIII (2002)Google Scholar
  17. 17.
    B. Krzan, J. Vizintin, Tribological properties of an environmentally adopted universal tractor transmission oil based on vegetable oil. Tribol. Int. 36, 827–833 (2003)CrossRefGoogle Scholar
  18. 18.
    J.K. Mannekote, S.V. Kailas, Influence of chemical structure on the boundary lubrication properties of vegetable oils. ASME 2010 10th biennial conference on engineering systems design and analysis (ESDA2010), (Istanbul, Turkey, ESDA2010-25070), pp. 633–637, 12–14 July 2010Google Scholar
  19. 19.
    N.H. Jayadas, K. Prabhakaran Nair, Coconut oil as base oil for industrial lubricants—evaluation and modification of thermal, oxidative and low temperature properties. Tribol. Int. 39, 873–878 (2006)CrossRefGoogle Scholar
  20. 20.
    J.K. Mannekote, S.V. Kailas, Performance evaluation of vegetable oils as lubricant in a four stroke engine. World Tribology Conference 2009, Kyoto, Japan, D-215, p. 331, 12–15 Sept 2009Google Scholar
  21. 21.
    J.K. Mannekote, S.V. Kailas, Experimental investigation of coconut and palm oils as lubricants in four stroke engines. Tribol. Online 6(1), 76–82 (2011)CrossRefGoogle Scholar
  22. 22.
    J.K. Mannekote, S.V. Kailas, R.T. Naik, Condition monitoring of vegetable oils used in a 4 stroke engine as lubricants. Tribo-India Conference on Tribology of Automotive Systems, 11, 12 Dec 2009Google Scholar
  23. 23.
    Jan Cloin, Coconut oil as a biofuel in Pacific Islands. Refocus July/August 2005Google Scholar
  24. 24.
    P.J. Singh, J. Khurma, A. Singh, Preparation, characterisation, engine performance and emission characteristics of coconut oil based hybrid fuels. Renew. Energy 35, 2065–2070 (2010)CrossRefGoogle Scholar
  25. 25.
    W.K. Trotter, W.D. Givan, Economics of sunflower oil use m the United States production and use in the United States. JAOCS 48, 442–449 (1971)CrossRefGoogle Scholar
  26. 26.
    Z. Flagella, T. Rotunno, E. Tarantino, R. Di Caterina, A. De Caro, Changes in seed yield and oil fatty acid composition of high oleic sunflower (Helianthus annuus L.) hybrids in relation to the sowing date and the water regime. Eur. J. Agron. 17, 221–230 (2002)CrossRefGoogle Scholar
  27. 27.
    G.A. Pereyra-Irujo, N.G. Izquierdo, M. Covi, S.M. Nolasco, F. Quiroz, L.A.N. Aguirrezábal, Variability in sunflower oil quality for biodiesel production: a simulation study. Biomass Bioenergy 33, 459–468 (2009)CrossRefGoogle Scholar
  28. 28.
    S.A. Smith, R.E. King, D.B. Min, Oxidative and thermal stabilities of genetically modified high oleic sunflower oil. Food Chem. 102, 1208–1213 (2007)CrossRefGoogle Scholar
  29. 29.
    S. Marmesat, M. Mancha, M.V. Ruiz-Méndez, M.C. Dobarganes, Performance of sunflower oil with high levels of oleic and palmitic acids during industrial frying of almonds, peanuts, and sunflower seeds. JAOCS 82(7), 505–510 (2005)CrossRefGoogle Scholar
  30. 30.
    I. Stefanescu, C. Calomir, C. Gheorghies, C. Spanu, Study on tribological properties of vegetable sunflower oil used as possible ecological lubricant, The Annals Of University “Dunărea De Jos” Of Galaţi Fascicle Viii, 2005, Issn 1221-4590, TribologyGoogle Scholar
  31. 31.
    G.A. Pereyra-Irujo, L.A.N. Aguirrezabal, Sunflower yield and oil quality interactions and variability: Analysis through a simple simulation model. Agric. For. Meteorol. 143, 252–265 (2007)CrossRefGoogle Scholar
  32. 32.
    J. Fredric, R.J. Baur, J.B. Brown, The fatty acids of corn oil, vol. 67, pp. 1899–1900 (1945)Google Scholar
  33. 33.
    L. Pop, C. Puscas, G. Bandur, G. Vlase, R. Nut iu, Basestock oils for lubricants from mixtures of corn oil and synthetic diesters. JAOCS 85, 71–76 (2008)CrossRefGoogle Scholar
  34. 34.
    F. Marini, F. Balestrieri, R. Bucci, A.L. Magr, D. Marini, Supervised pattern recognition to discriminate the geographical origin of rice bran oils: a first study. Microchem. J. 74, 239–248 (2003)CrossRefGoogle Scholar
  35. 35.
    A. Saydu, M.Z. Duz, C. Kaya, A.B. Kafadar, C. Hamamci, Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel. Bioresou. Technol. 99, 6656–6660 (2008)CrossRefGoogle Scholar
  36. 36.
    N.A. Santos, M.L.A. Tavares, R. Rosenhaim, F.C. Silva, V.J. Fernandes Jr, A.G. Souza, Thermogravimetric and calorimetric evaluation of babassu biodiesel obtained by the methanol route. J. Therm. Anal. Calorim. 87(3), 649–652 (2007)CrossRefGoogle Scholar
  37. 37.
    L. Canoira, J.G. Galea, R. Alcantara, M. Lapuerta, R. Garcıa-Contreras, Fatty acid methyl esters (FAMEs) from castor oil: production process assessment and synergistic effects in its properties. Renew. Energy 35, 208–217 (2010)CrossRefGoogle Scholar
  38. 38.
    J.S. de Oliveira, P.M. Leite, L.B. de Souza, V.M. Mello, E.C. Silva, J.C. Rubim, S.M.P. Meneghetti, P.A.Z. Suarez, Characteristics and composition of jatropha gossypiifolia and Jatropha curcas L. oils and application for biodiesel production. Biomass Bioenergy 33, 449–453 (2009)CrossRefGoogle Scholar
  39. 39.
    E.T. Akintayo, Characteristics and composition of Parkia biglobbossa and Jatropha curcas oils and cakes. Bioresour. Technol. 92, 307–310 (2004)CrossRefGoogle Scholar
  40. 40.
    S.N. Shah, B.K. Sharma, B.R. Moser, S.Z. Erhan, Preparation and evaluation of jojoba oil methyl esters as biodiesel and as a blend component in ultra-low sulfur diesel fuel. Bioenerg. Res. 3, 214–223 (2010)CrossRefGoogle Scholar
  41. 41.
    H. Gisser, J. Messina, D. Chasan, Jojoba oil as a sperm oil substitute. Wear 34, 53–63 (1975)CrossRefGoogle Scholar
  42. 42.
    A. Apelblat, J. Wisniak, G. Shapiro, Physical properties of (jojoba oil + n-hexane) compared with other (vegetable oil + n-hexane) mixtures. J. Chem. Thermodyn. 40, 1477–1484 (2008)CrossRefGoogle Scholar
  43. 43.
    R.P.S. Bisht, G.A. Sivasankaran, V.K. Bhatia, Additive properties of jojoba oil for lubricating oil formulations. Wear 161, 193–197 (1993)CrossRefGoogle Scholar
  44. 44.
    G.A. Sivasankaran, R.P.S. Bisht, V.K. Jain, M. Gupta, A. Sethuramiah, V.K. Bhatia, Jojoba-oil-based two-stroke gasoline engine lubricant. Tribol. Int. 21(6), 327–333 (1988)CrossRefGoogle Scholar
  45. 45.
    M. Allawzi, M.K. Abu-Arabi, H.S. Al-zoubi, A. Tamimi, Physicochemical characteristics and thermal stability of Jordanian jojoba oil. JAOCS 75(1), 57–62 (1998)CrossRefGoogle Scholar
  46. 46.
    S.L. Pearson, J.E. Spagnoli, Environment lubricants–an overview of onsite applications and experience. Lubr. Eng. 56(4), 40 (2000)Google Scholar
  47. 47.
    B. Wilson, Lubricants and functional fluids from renewable sources. Ind. Lubr. Technol. 50(1), 6–15 (1998)CrossRefGoogle Scholar
  48. 48.
    B.K. Sharma, A. Adhvaryu, Z. Liu, S.Z. Erhan, Chemical modification of vegetable oils for lubricant applications. JAOCS 83(2), 129–136 (2006)CrossRefGoogle Scholar
  49. 49.
    S. Onkawa, A. Konishi, H. Hatano, K. Ishihama, K. Tanaka, M. Awamura, Oxidation and corrosion characteristics of vegetable base biodegradable hydraulic oils. SAE Tech. Pap. 951038, 55–63 (1995)Google Scholar
  50. 50.
    B.N. Rhodes, W. Mammel, P. Landis, F.L. Erickson, Water rejection of vegetable oil base stocks for tractor/hydraulic fluids. SAE Tech. Pap. 952073, 1–4 (1995)Google Scholar
  51. 51.
    S. Asadauskas, S.Z. Erhan, Depression of pour points of vegetable oils by blending with diluents used for biodegradable lubricants. JAOCS 76(3), 313–316 (1999)CrossRefGoogle Scholar
  52. 52.
    H.-S. Hwang, S.Z. Erhan, Modification of epoxidized soybean oil for lubricant formulations with improved oxidative stability and low pour point. JAOCS 78(12), 1179–1184 (2001)CrossRefGoogle Scholar
  53. 53.
    S.Z. Erhan, B.K. Sharma, Z. Liu, A. Adhvaryu, Lubricant base stock potential of chemically modified vegetable oils. J. Agric. Food Chem. 56, 8919–8925 (2008)CrossRefGoogle Scholar
  54. 54.
    B.K. Sharma, A. Adhvaryu, S.Z. Erhan, Friction and wear behavior of thioether hydroxy vegetable oil. Tribol. Int. 42, 353–358 (2009)CrossRefGoogle Scholar
  55. 55.
    J. Sepulveda, S. Teixeira, U. Schuchardt, Alumina-catalyzed epoxidation of unsaturated fatty esters with hydrogen peroxide. Appl. Catal. A 318, 213–217 (2007)CrossRefGoogle Scholar
  56. 56.
    J.L. Scala, R.P. Wool, Effect of FA composition on epoxidation kinetics of TAG. JAOCS 79(4), 373–378 (2002)CrossRefGoogle Scholar
  57. 57.
    L.H. Gan, K.S. Ooi, L.M. Gan, S.H. Goh, Effects of epoxidation on the thermal oxidative stabilities of fatty acid esters derived from palm olein. JAOCS 72(4), 439–442 (1995)CrossRefGoogle Scholar
  58. 58.
    R. Mungroo, N.C. Pradhan, V.V. Goud, A.K. Dalai, Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin. JAOCS 85, 887–896 (2008)CrossRefGoogle Scholar
  59. 59.
    S. Dinda, A.V. Patwardhan, V.V. Goud, N.C. Pradhan, Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresour. Technol. 99, 3737–3744 (2008)CrossRefGoogle Scholar
  60. 60.
    V.V. Goud, N.C. Pradhan, A.V. Patwardhan, Epoxidation of karanja (pongamia glabra) oil by H2O2. JAOCS 83(7), 635–640 (2006)CrossRefGoogle Scholar
  61. 61.
    F.E. Okieimen, O.I. Bakare, C.O. Okieimen, Studies on the epoxidation of rubber seed oil. Ind. Crops Prod. 15, 139–144 (2002)CrossRefGoogle Scholar
  62. 62.
    A. Adhvaryu, S.Z. Erhan, Epoxidized soybean oil as a potential source of high-temperature lubricants. Ind. Crop Prod. 15, 247–254 (2002)CrossRefGoogle Scholar
  63. 63.
    S.Z. Erhan, B.K. Sharma, Z. Liu, A. Adhvaryu, Lubricant base stock potential of chemically modified vegetable oils. J. Agric. Food Chem. 56, 8919–8925 (2008)CrossRefGoogle Scholar
  64. 64.
    B.K. Sharma, A. Adhvaryu, S.Z. Erhan, Friction and wear behavior of thioether hydroxy vegetable oil. Tribol. Int. 42, 353–358 (2009)CrossRefGoogle Scholar
  65. 65.
    E.H. Pryde, JAOCS 61(2), 419–425 (1984)CrossRefGoogle Scholar
  66. 66.
    J.P. Friedrich, G.R. List, V.E. Sohns, Hydroformylation of methyl oleate with a recycled rhodium catalyst and estimated costs for a batch process. J. Am. Oil Chem. Soc. 50, 455–458 (1973)CrossRefGoogle Scholar
  67. 67.
    E.N. Frankel, Methyl 9(lO)-formylstearate by selective hydroformylation of oleic oils. JAOCS 48, 248–253 (1971)CrossRefGoogle Scholar
  68. 68.
    M.W. Balakos, E.E. Hernanolez, Catalyst characteristics and performance in edible oil hydrogenation. Catal. Today 35, 415–425 (1997)CrossRefGoogle Scholar
  69. 69.
    A. Behr, H. Schmidke, Selektive hydrierung ungesattigter modellverfindungen mit solvesstabilisierten palladium-kolloidkatalysatoren. Chem.-1ng.-Tech. 65, 568–569 (1993)Google Scholar
  70. 70.
    L.E. Johansson, S.T. Lundin, Copper catalysts in the selective hydrogenation of soybean and rapeseed oils: I. The activity of the copper chromite catalyst. JAOCS 56, 974–980 (1979)CrossRefGoogle Scholar
  71. 71.
    K. Mondal, S.B. Lalvani, A second-order model for catalytic-transfer hydrogenation of edible oils. JAOCS 77(1), 1–8 (2000)CrossRefGoogle Scholar
  72. 72.
    M. Martinelli, R. de Cassia de Souza Schneider, V.Z. Baldissarelli, M.L. von Holleben, E.B. Caramao, Castor oil hydrogenation by a catalytic hydrogen transfer system using limonene as hydrogen donor. JAOCS 82(4), 279–283 (2005)Google Scholar
  73. 73.
    Y. Kitayamaa, M. Muraokaa, M. Takahashia, T. Kodamaa, E. Takahashib, M. Okamurac, Catalytic hydrogenation of linoleic acid over platinum-group metals supported on alumina. JAOCS 74(5), 525–529 (1997)CrossRefGoogle Scholar
  74. 74.
    N. Ravasio, F. Zaccheria, M. Gargano, S. Recchia, A. Fusi, N. Poli, R. Psaro, Environmental friendly lubricants through selective hydrogenation of rapeseed oil over supported copper catalysts. Appl. Catal. A 233, 1–6 (2002)CrossRefGoogle Scholar
  75. 75.
    A. Behr, A. Westfechtel, J.P. Gomes, Catalytic processes for the technical use of natural fats and oils. Chem. Eng. Technol. 31(5), 700–714 (2008)CrossRefGoogle Scholar
  76. 76.
    S. Warwel, P. Bavaj, M.R. Klass, B. Wolff, H. Eierdanz, Perspektiven nachwachsender Rohstoffe in der Chemie (VCH, Weinheim, 1996), p. 119CrossRefGoogle Scholar
  77. 77.
    R.W. Johnson, E. Fritz, Fatty Acids in Industry (Marel Dekker, New York, 1988), p. 667Google Scholar
  78. 78.
    H. Wagner, R. Luther, T. Mang, Lubricant base fluids based on renewable raw materials their catalytic manufacture and modification. Appl. Catal. A 221, 429–442 (2001)CrossRefGoogle Scholar
  79. 79.
    L.T. Black, R.E. Beal, Acetoxylation of methyl oleate with a resin catalyst. JAOCS 44, 310–312 (1967)CrossRefGoogle Scholar
  80. 80.
    U. Biermann, J.O. Metzger, Friedel–crafts alkylation of alkenes: ethylaluminum sesquichloride induced alkylations with alkyl chloroformates. Angew Chem. Int. Ed. 38(24), 3675–3677 (1999)CrossRefGoogle Scholar
  81. 81.
    J.O. Metzger, U. Biermann, Alkylaluminium dichloride induced friedel-crafts acylation of unsaturated carboxylic acids and alcohols. Liebigs. Ann. Chem. 645–650 (1993)CrossRefGoogle Scholar
  82. 82.
    S. Asadauskas, H.P. Joseph, J.D. Larry, Lubrication properties of castor oil potential basestock for biodegradable lubricants. Lubr. Eng. 53(12), 35–40 (1997)Google Scholar
  83. 83.
    L.C. Meher, S.D. Vidya, S.N. Naik, Technical aspects of biodiesel production by transesterification—a review. Renew. Sustain. Energy Rev. 10, 248–268 (2006)CrossRefGoogle Scholar
  84. 84.
    P.S. Wang, The production of isopropyl esters and their effects on a diesel engine. Master of Science thesis to Iowa State University (2003)Google Scholar
  85. 85.
    R. Alcantara, J. Amores, L. Canoira, E. Fidalgo, M.J. Franco, A. Navarro, Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass and Bioenergy 18, 515–527 (2000)CrossRefGoogle Scholar
  86. 86.
    U. Schuchardta, S. Ricardo, M.V. Rogerio, Transesterification of vegetable oils: a review. J. Braz. Chem. Soc. 9(1), 199–210 (1998)Google Scholar
  87. 87.
    F.R. Abreu, G.L. Daniella, H.H. Elias, W. Carlos, A.Z.S. Paulo, Utilization of metal complexes as catalysts in the transesterification of Brazilian vegetable oils with different alcohols. J. Mol. Catal. A: Chem. 209, 29–33 (2004)CrossRefGoogle Scholar
  88. 88.
    M.W. Formo, Ester reactions of fatty materials. JAOCS 3(11), 548–559 (1954)Google Scholar
  89. 89.
    C.Y. May, Transesterification of palm oil: effect of reaction parameters. J. Oil Palm Res. 16(2), 1–11 (2004)Google Scholar
  90. 90.
    J.M. Encinar, J.F. Gonzalez, J.J. Rodrıguez, A. Tejedor, Biodiesel fuels from vegetable oils: transesterification of cynara cardunculus l oils with ethanol. Energy Fuels 162, 443–450 (2002)CrossRefGoogle Scholar
  91. 91.
    E. Crabbe, C. Nolasco-Hipolito, G. Kobayashi, K. Sonomoto, A. Ishizaki, Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochem. 37, 65–71 (2001)CrossRefGoogle Scholar
  92. 92.
    O. Rachmaniah, J. Yi-Hsu, R.V. Shaik, T. Ismojowati, A.S. Musfil, A study on acid-catalyzed transesterification of crude rice bran oil for biodiesel production (2001)Google Scholar
  93. 93.
    M.P. Simoni, R.M. Mario, R. Carlos, E.C. Wolf, G.E.S. Silva, M.A. Lima, J.I.S. Coimbra, H.V.C. Sandra, Ethanolysis of castor and cottonseed oil:a systematic study using classical catalysts. JAOCS 83(9), 819–822 (2006)CrossRefGoogle Scholar
  94. 94.
    H. Noureddin, D. Zhu, Kinetics of transesterification of soyabean oil. Biocatal. Art. 74(11), 1457–1563 (1997)Google Scholar
  95. 95.
    D. Darnoko, M. Cheryan, Kinetics of palm oil transesterification in a batch reactor. JAOCS 77(12), 1263–1268 (2000)CrossRefGoogle Scholar
  96. 96.
    A.W. Schwab, M.O. Bagby, B. Freedman, Preparation and properties of diesel fuels from vegetable oils. Fuel 66, 1372–1378 (1987)CrossRefGoogle Scholar
  97. 97.
    M.A. Maleque, H.H. Masjuki, S.M. Sapuan, Vegetable-based biodegradable lubricating oil additives. Ind. Lubr. Technol. 55(3), 137–143 (2003)CrossRefGoogle Scholar
  98. 98.
    D.C. Drown, K. Harper, E. Frame, Screening vegetable oil alcohol esters as fuel lubricity enhancers. JAOCS 78(6), 579–585 (2001)CrossRefGoogle Scholar
  99. 99.
    M.G. Kulkarni, A.K. Dalai, N.N. Bakhshi, Transesterification of canola oil in mixed methanol/ethanol system and use of esters as lubricity additive. Bioresour. Technol. 98, 2027–2033 (2007)CrossRefGoogle Scholar
  100. 100.
    ASTM D5355Google Scholar
  101. 101.
  102. 102.
  103. 103.
    ASTM D3339Google Scholar
  104. 104.
    ASTM D2270Google Scholar
  105. 105.
    ASTM D5558Google Scholar
  106. 106.
    ASTM D5554Google Scholar
  107. 107.
    ASTM D5555Google Scholar
  108. 108.
    ASTM D1747Google Scholar
  109. 109.
    ASTM D4377Google Scholar
  110. 110.
    ASTM D4928Google Scholar
  111. 111.
  112. 112.
    ASTM D7094Google Scholar
  113. 113.
  114. 114.
    ASTM D2500Google Scholar
  115. 115.
    ASTM D1401Google Scholar
  116. 116.
    ASTM D3601Google Scholar
  117. 117.
    ASTM D3519Google Scholar
  118. 118.
    ASTM D 892Google Scholar
  119. 119.
    ASTM D2619Google Scholar
  120. 120.
    ASTM D2070Google Scholar
  121. 121.
    ASTM D6375Google Scholar
  122. 122.
    ASTM D2272Google Scholar
  123. 123.
    A. Adhvaryu, Z. Liu, S.Z. Erhan, Synthesis of novel alkoxylated triacylglycerols and their lubricant base oil properties. Ind. Crops Prod. 21, 113–119 (2005)CrossRefGoogle Scholar
  124. 124.
    ASTM D3233Google Scholar
  125. 125.
    ASTM D2783Google Scholar
  126. 126.
    ASTM D4172Google Scholar
  127. 127.
    ASTM D6081Google Scholar
  128. 128.
    ASTM D5864Google Scholar
  129. 129.
  130. 130.
    B. Sreenivasan, Component fatty acids of some oils and fats and composition. JAOCS 45, 259–265 (1968)CrossRefGoogle Scholar
  131. 131.
    V.S. Yaliwal, S.R. Daboji, N.R. Banapurmath, P.G. Tewari, Production and utilization of renewable liquid fuel in a single cylinder four stroke direct injection compression ignition engine. Int. J. Eng. Sci. Tech. 2(10), 5938–5948 (2010)Google Scholar
  132. 132.
    G. Fontaras, T. Tzamkiozis, E. Hatziemmanouil, Z. Samaras, Experimental study on the potential application of cottonseed oil—diesel blends as fuels for automotive diesel engines. Trans. I Chem. E 85(B5), 396–403 (2007)Google Scholar
  133. 133.
    E.J. CAMPBELL, Sunflower oil. JAOCS 60(2), 387–392 (1983)CrossRefGoogle Scholar
  134. 134.
    S. Mia, N. Ohno, Prospect of mustard and coconut oil as environment friendly lubricant for Bangladesh. in Proceedings of International Conference on Environmental Aspects of Bangladesh (ICEAB10), Japan, Sept. 2010, pp. 120–121Google Scholar
  135. 135.
    F.L. Jackson, H.E. Longenecker, The fatty acids and glycerides of babassu oil. Oil Soap 21, 73–75 (1944)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • K. R. Sathwik Chatra
    • 1
  • N. H. Jayadas
    • 2
  • Satish V. Kailas
    • 1
  1. 1.Department of Mechanical EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Mechanical EngineeringCochin University of Science and TechnologyErnakulamIndia

Personalised recommendations