Green Tribology, its History, Challenges, and Perspectives

  • Michael Nosonovsky
  • Bharat Bhushan
Part of the Green Energy and Technology book series (GREEN)


In this chapter the concept of green tribology and its relation to other areas of tribology is discussed as well as other “green” disciplines, namely, green engineering and green chemistry. The twelve principles of green tribology are formulated: the minimization of (1) friction and (2) wear, (3) the reduction or complete elimination of lubrication, including self-lubrication, (4) natural and (5) biodegradable lubrication, (6) using sustainable chemistry and engineering principles, (7) biomimetic approaches, (8) surface texturing, (9) environmental implications of coatings, (10) real-time monitoring, (11) design for degradation, and (12) sustainable energy applications. Three areas of green tribology are further defined: (1) biomimetics for tribological applications, (2) environment-friendly lubrication, and (3) the tribology of renewable energy application. The integration of these areas remains a primary challenge for this novel area of research. The challenges of green tribology and future directions of research are also discussed.


Green Chemistry Superhydrophobic Surface Tribological Application Water Lubrication Biomimetic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.T. Allen, D.R. Shonnard, Green Engineering: Environmentally Conscious Design Of Chemical Processes (Prentice Hall, Upper Saddle River, 2001)Google Scholar
  2. 2.
    P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice (Oxford University Press, Oxford, 1998)Google Scholar
  3. 3.
    Anonymous, Green Engineering (2010)
  4. 4.
    Y. Bar-Cohen, Biomimetics: Nature-Based Innovation (CRC Press, Boca Raton, 2011)Google Scholar
  5. 5.
    W.J. Bartz, Ecotribology: Environmentally Acceptable Tribological Practices. Tribol. Int. 39, 728–733 (2006)CrossRefGoogle Scholar
  6. 6.
    W.M.J. Batten, A.S. Bahaj, A.F. Molland, J.R. Chaplin, The Prediction of the Hydrodynamic Performance of Marine Current Turbines. Renew. Energ. 33, 1085–1096 (2008)CrossRefGoogle Scholar
  7. 7.
    E.R. Bertani, World Geothermal Generation in 2007. Geo Heat Cent. Bull. 28, 8–19 (2007)Google Scholar
  8. 8.
    B. Bhushan, Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, New York, 1996)CrossRefGoogle Scholar
  9. 9.
    B. Bhushan, Principles and Applications of Tribology (Wiley, New York, 1999)Google Scholar
  10. 10.
    B. Bhushan, Mechanics and Reliability of Flexible Magnetic Media, 2nd edn. (Springer, New York, 2000)CrossRefGoogle Scholar
  11. 11.
    B. Bhushan, Modern Tribology Handbook, Vol. 1–Principles of Tribology; Vol. 2–Materials, Coatings, and Industrial Applications (CRC Press, Boca Raton, 2001)Google Scholar
  12. 12.
    B. Bhushan, Introduction to Tribology (Wiley, New York, 2002)Google Scholar
  13. 13.
    B. Bhushan, Adhesion of Multi-level Hierarchical Attachment Systems in Gecko feet. J. Adhesion Sci. Technol. 21, 1213–1258 (2007, invited)Google Scholar
  14. 14.
    B. Bhushan, Biomimetics: Lessons from Nature—an overview. Phil. Trans. R. Soc. A 367, 1445–1486 (2009)CrossRefGoogle Scholar
  15. 15.
    B. Bhushan, Springer Handbook of Nanotechnology, 3rd edn. (Springer, Heidelberg, 2010)CrossRefGoogle Scholar
  16. 16.
    B. Bhushan, Nanotribology and Nanomechanics I-Measurement Techniques and Nanomechanics, II-Nanotribology, Biomimetics, and Industrial Applications, 3rd edn. (Springer, Heidelberg, 2011)Google Scholar
  17. 17.
    B. Bhushan, B.K. Gupta, Handbook of Tribology: Materials, Coatings, and Surface Treatments (McGraw-Hill, New York, 1991)Google Scholar
  18. 18.
    B. Bhushan, E.K. Her, Fabrication of Superhydrophobic Surfaces with high and low Adhesion Inspired from rose petal. Langmuir 26, 8207–8217 (2010)CrossRefGoogle Scholar
  19. 19.
    B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1–108 (2011)CrossRefGoogle Scholar
  20. 20.
    B. Bhushan, M. Nosonovsky, The rose petal effect and the modes of superhydrophobicity. Phil. Trans. Royal. Soc. A. 368, 4713–4728 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    B. Bhushan, Y.C. Jung, K. Koch, Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Phil. Trans. R. Soc. A 367, 1631–1672 (2009)CrossRefGoogle Scholar
  22. 22.
    E. Bormashenko, Wetting transitions on biomimetic surfaces. Phil. Trans. Royal. Soc. A. 368, 4695–4712 (2010)CrossRefGoogle Scholar
  23. 23.
    M.A. Bucaro, P.R. Kolodner, A. Taylor, A. Sidorenko, J. Aizenberg, T.N. Krupenkin, Tunable liquid optics: electrowetting-controlled liquid mirrors based on self-assembled janus tiles. Langmuir 25, 3876–3879 (2009)CrossRefGoogle Scholar
  24. 24.
    L. Cao, A.K. Jones, V.K. Sikka, J. Wu, D. Gao, Anti-icing superhydrophobic coatings. Langmuir 25, 12444–12448 (2009)CrossRefGoogle Scholar
  25. 25.
    L.D. Chambers, K.R. Stokes, F.C. Walsh, R.J.K. Wood, Modern approaches to marine antifouling coatings. Surf. Coat. Tech. 201, 3642–3652 (2006)CrossRefGoogle Scholar
  26. 26.
    D.J.C. Constable, A.D. Curzons, L.M. Freitas dos Santos, G.R. Geen, R.E. Hannah, J.D. Hayler, J. Kitteringham, M.A. McGuire, J.E. Richardson, P. Smith, R.L. Webb, M. Yu, Green chemistry measures for process research and development. Green Chem. 3, 7–9 (2001)CrossRefGoogle Scholar
  27. 27.
    B. Dean, B. Bhushan, Shark-skin surfaces for fluid drag reduction in turbulent flow. Phil. Trans. Royal. Soc. A. 368, 4775–4806 (2010)CrossRefGoogle Scholar
  28. 28.
    E. Favret, N.O. Fuentas, Functional Properties of Bio-inspired Surfaces: Characterization and Technological Applications (World Scientific, Hackensack, 2009)CrossRefGoogle Scholar
  29. 29.
    P. Fratzl, Biomimetic materials research: what can we really learn from nature’s structural materials? J. R. Soc. Interf. 4, 637–642 (2007)CrossRefGoogle Scholar
  30. 30.
    P. Fratzl, R. Weinkamer, Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007)CrossRefGoogle Scholar
  31. 31.
    X.F. Gao, L. Jiang, Biophysics: water-repellent legs of water striders. Nature 432, 36 (2004)CrossRefGoogle Scholar
  32. 32.
    J. Genzer, K. Efimenko, Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22, 339–360 (2006)CrossRefGoogle Scholar
  33. 33.
    A. Gombert, B. Blasi, The Moth-Eye-Effect—from Fundamentals to Commercial Exploitation, in Functional Properties of Bio-inspired Surfaces: Characterization and Technological Applications, ed. by E. Favret, N.O. Fuentas (World Scientific Publishing Co., Hackensack, 2009), pp. 79–102CrossRefGoogle Scholar
  34. 34.
    S. Gorb, Functional Surfaces in Biology: Mechanisms and Applications, in Biomimetics: Biologically Inspired Technologies, ed. by Y. Bar-Cohen (Taylor and Francis, Boca Raton, 2006), pp. 381–397Google Scholar
  35. 35.
    A.N. Gorban’, A.M. Gorlov, V.M. Silantyev, Limits of the turbine efficiency for free fluid flow. ASME J. Energ. Resour. Technol. 123, 311–317 (2001)CrossRefGoogle Scholar
  36. 36.
    N.N. Greenwood, J.A. Spink, An antipodean laboratory of remarkable distinction. Notes Rec. R. Soc. Lond. 57, 85–105 (2003)CrossRefGoogle Scholar
  37. 37.
    T. Hudlicky, D.A. Frey, L. Koroniak, C.D. Claeboe, L.E. Brammer, Toward a reagent-free synthesis. Green Chem. 1, 57–59 (1999)CrossRefGoogle Scholar
  38. 38.
    H.P. Jost, Green Tribology—A Footprint where Economics and Environment Meet, presented at 4th World Tribology Congress, Kyoto, 6–11 September 2009 (unpublished)Google Scholar
  39. 39.
    Y.C. Jung, B. Bhushan, Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. Langmuir 25, 14165–14173 (2009)CrossRefGoogle Scholar
  40. 40.
    Y.C. Jung, B. Bhushan, Biomimetic structures for fluid drag reduction in laminar and turbulent flows. J. Phys. Cond. Matt. 22, 035104 (2010)CrossRefGoogle Scholar
  41. 41.
    M.A. Kabir, C.F. Higgs III, M.R. Lovell, A pin-on disk experimental study on a green particulate-fluid lubricant. J. Tribol. 130(4), 041801 (6 pp) (2008)Google Scholar
  42. 42.
    M.N. Kotzalas, G.L. Doll, Tribological advancements for reliable wind turbine performance. Phil. Trans. Royal. Soc. A. 368, 4829–4850 (2010)CrossRefGoogle Scholar
  43. 43.
    M. Kotzalas, D. Lucas, Comparison of bearing fatigue life predictions with test data, in Proceedings AWEA Wind Power, Los Angeles, 3–6 June 2007 [CD-ROM] (2007)Google Scholar
  44. 44.
    W. Li, X.H. Kong, M. Ruan, F.M. Ma, Y.F. Jiang, M.Z. Liu, Y. Chen, X.H. Zuo, Green waxes, adhesives and lubricants. Phil. Trans. Royal. Soc. A. 368, 4869–4890 (2010)CrossRefGoogle Scholar
  45. 45.
    J.A. Linthorst, An overview: origins and development of green chemistry. Found. Chem. 12, 55–68 (2010)CrossRefGoogle Scholar
  46. 46.
    M.R. Lovell, M.A. Kabir, P.L. Menzes, C.F. Higgs III, Influence of boric acid additive size on green lubricant performance. Phil. Trans. Royal. Soc. A. 368, 4851–4868 (2010)CrossRefGoogle Scholar
  47. 47.
    J.K. Mannekote, and S.V. Kailas, Performance evaluation of vegetable oils as lubricant in a four stroke engine, in Proceedings Fourth World Tribology Congress, Kyoto, 6–11 Sept 2009, p. 331Google Scholar
  48. 48.
    M. Nosonovsky, Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23, 3157–3161 (2007)CrossRefGoogle Scholar
  49. 49.
    M. Nosonovsky, Self-organization at the frictional interface for green tribology. Phil. Trans. Royal. Soc. A. 368, 4755–4774 (2010)MathSciNetCrossRefGoogle Scholar
  50. 50.
    M. Nosonovsky, Towards the ‘green tribology’: biomimetic surfaces, biodegradable lubrication, and renewable energy, in Proceedings 1st International Brazilian Conference on Tribology TriboBr-2010-17172, 24–26 Nov 2010, Rio de Janeiro (2010b)Google Scholar
  51. 51.
    M. Nosonovsky, Towards ‘green tribology’: self-organization at the sliding interface for biomimetic surfaces, in Proceedings. ASME 10th Biennial Conference on Engineering Systems Design and Analysis, 12–14 July 2010, Istanbul, Turkey, ESDA2010-25047 (2010c)Google Scholar
  52. 52.
    M. Nosonovsky, B. Bhushan, Biomimetic superhydrophobic surfaces: multiscale approach. Nano. Lett. 7, 2633–2637 (2007)CrossRefGoogle Scholar
  53. 53.
    M. Nosonovsky, B. Bhushan, Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater. Sci. Eng. R 58, 162–193 (2007)CrossRefGoogle Scholar
  54. 54.
    M. Nosonovsky, B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics (Springer, Heidelberg, 2008)zbMATHGoogle Scholar
  55. 55.
    M. Nosonovsky, B. Bhushan, Multiscale effects and capillary interactions in functional biomimetic surfaces for energy conversion and green engineering. Phil. Trans. R. Soc. A 367, 1511–1539 (2009)CrossRefGoogle Scholar
  56. 56.
    M. Nosonovsky, B. Bhushan, Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci. 14, 270–280 (2009)CrossRefGoogle Scholar
  57. 57.
    M. Nosonovsky, B. Bhushan, Thermodynamics of surface degradation, self-organization, and self-healing for biomimetic surfaces. Phil. Trans. R. Soc. A 367, 1607–1627 (2009)CrossRefGoogle Scholar
  58. 58.
    M. Nosonovsky, B. Bhushan, Green tribology: principles, research areas and challenges. Phil. Trans. Royal. Soc. A. 368, 4677–4694 (2010)MathSciNetCrossRefGoogle Scholar
  59. 59.
    M. Nosonovsky, and B. Bhushan, Towards the ‘Green Tribology:’ Biomimetic Surfaces, Biodegradable Lubrication, and Renewable Energy, in Proceedings STLE/ASME 2010 International Joint Tribology Conference, 17–20 Oct 2010, San Francisco, IJTC2010-41157 (2010b)Google Scholar
  60. 60.
    P. Palacio, B. Bhushan, A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol. Lett. 40, 247–268 (2010)CrossRefGoogle Scholar
  61. 61.
    A.R. Parker, C.R. Lawrence, Water capture by a desert beetle. Nature 414, 33–34 (2001)CrossRefGoogle Scholar
  62. 62.
    L. Raibeck, J. Reap, B. Bras, Investigating environmental burdens and benefits of biologically inspired self-cleaning surfaces. CIRP J. Manufact. Sci. Technol. 1, 230–236 (2009)CrossRefGoogle Scholar
  63. 63.
    I. Rechenberg, A.R. El Khyeri, The sandfish of the Sahara. A model for friction and wear reduction. (Department of Bionics and Evolution Techniques, Technical University of Berlin, Berlin), See
  64. 64.
    W.E. Reif, Squamation and ecology of sharks. Cour. Forschung. Senck. 78, 1–255 (1985)Google Scholar
  65. 65.
    L. Rybach, Geothermal sustainability. Geo Heat Cent. Q. Bull. 28, 2–7 (2007)Google Scholar
  66. 66.
    M. Salta, J.A. Wharton, P. Stoodley, S.P. Dennington, L.R. Goodes, S. Werwinski, U. Mart, R.J.K. Wood, K.R. Stokes, Designing biomimetic antifouling surfaces. Phil. Trans. Royal. Soc. A. 368, 4729–4754 (2010)CrossRefGoogle Scholar
  67. 67.
    S. Sasaki, Environmentally friendly tribology (eco-tribology). J. Mech. Sci. Technol. 24, 67–71 (2010)CrossRefGoogle Scholar
  68. 68.
    M. Scherge, S. Gorb, Biological Micro- and Nanotribology: Nature’s Solutions (Springer, Heidelberg, 2001)Google Scholar
  69. 69.
    R.A. Sheldon, Organic synthesis: past, present and future. Chem. Ind. 23, 903–906 (1992)Google Scholar
  70. 70.
    A. Sidorenko, T. Krupenkin, A. Taylor, P. Fratzl, J. Aizenberg, Reversible switching of hydrogel-sctuated nanostructures into complex micropatterns. Science 315, 487–490 (2007)CrossRefGoogle Scholar
  71. 71.
    B.M. Trost, The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991)CrossRefGoogle Scholar
  72. 72.
    A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E. Cohen, Designing superoleophobic surfaces. Science 318, 1618–1622 (2007)CrossRefGoogle Scholar
  73. 73.
    A. Tuteja, W. Choi, J.M. Mabri, G.H. McKinley, R.E. Cohen, Robust omniphobic surfaces. Proc. Nat. Acad. Sci. U. S. A. 105, 18200–18205 (2008)CrossRefGoogle Scholar
  74. 74.
    M. Varenberg, S. Gorb, Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21, 483–486 (2009)CrossRefGoogle Scholar
  75. 75.
    R.J.K. Wood, A.S. Bahaj, S.R. Turnock, L. Wang, M. Evans, Tribological design constraints of marine renewable energy systems. Phil. Trans. Royal. Soc. A. 368, 4807–4828 (2010)CrossRefGoogle Scholar
  76. 76.
    E.Y.A. Wornyoh, V.K. Jasti, C.F. Higgs III, A review of dry particulate lubrication: powder and granular materials. ASME J. Tribol. 129, 438–449 (2007)CrossRefGoogle Scholar
  77. 77.
    R. Yun, Y. Lu, P. Filip, Application of extension evaluation method in development of novel eco-friendly brake materials. SAE Int. J. Mater. Manuf. 2, 1–7 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.College of Engineering and Applied ScienceUniversity of WisconsinMilwaukeeUSA
  2. 2.Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB2)The Ohio State UniversityColumbusUSA

Personalised recommendations