Skip to main content

A Recursive Sparse Blind Source Separation Method for Nonnegative and Correlated Data in NMR Spectroscopy

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6855))

Included in the following conference series:

  • 2558 Accesses

Abstract

Motivated by the nuclear magnetic resonance (NMR) spectroscopy of biofluids (urine and blood serum), we present a recursive blind source separation (rBSS) method for nonnegative and correlated data. A major approach to non-negative BSS relies on a strict non-overlap condition (also known as the pixel purity assumption in hyper-spectral imaging) of source signals which is not always guaranteed in the NMR spectra of chemical compounds. A new dominant interval condition is proposed. Each source signal dominates some of the other source signals in a hierarchical manner. The rBSS method then reduces the BSS problem into a series of sub-BSS problems by a combination of data clustering, linear programming, and successive elimination of variables. In each sub-BSS problem, an ℓ1 minimization problem is formulated for recovering the source signals in a sparse transformed domain. The method is substantiated by NMR data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton, R., Nicholson, J., Elliot, P., Holmes, E.: High-throughput 1H NMR-based metabolic analysis of human serum and urine for large-scale epidemiological studies: validation study. Int. J. Epidemiol. 37(suppl 1), i31–i40 (2008)

    Article  Google Scholar 

  2. Boardman, J.: Automated spectral unmixing of AVRIS data using convex geometry concepts. In: Summaries of the IV Annual JPL Airborne Geoscience Workshop, vol. 1, pp. 11–14. JPL Pub., 93-26 (1993)

    Google Scholar 

  3. Chang, C.-I. (ed.): Hyperspectral Data Exploitation: Theory and Applications. Wiley-Interscience, Hoboken (2007)

    Google Scholar 

  4. Ernst, R., Bodenhausen, G., Wokaun, A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, Oxford (1987)

    Google Scholar 

  5. Lee, D.D., Seung, H.S.: Learning of the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  6. Naanaa, W., Nuzillard, J.–M.: Blind source separation of positive and partially correlated data. Signal Processing 85(9), 1711–1722 (2005)

    Article  MATH  Google Scholar 

  7. Nuzillard, D., Bourgb, S., Nuzillard, J.–M.: Model-Free analysis of mixtures by NMR using blind source separation. J. Magn. Reson. 133, 358–363 (1998)

    Article  Google Scholar 

  8. Sun, Y., Ridge, C., del Rio, F., Shaka, A.J., Xin, J.: Postprocessing and Sparse Blind Source Separation of Positive and Partially Overlapped Data. Signal Processing 91(8), 1838–1851 (2011)

    Article  MATH  Google Scholar 

  9. Sun, Y., Xin, J.: Nonnegative Sparse Blind Source Separation for NMR Spectroscopy by Data Clustering, Model Reduction, and ℓ1 Minimization, preprint (2011); under review and revision for publication

    Google Scholar 

  10. Stadlthanner, K., Tom, A., Theis, F., Gronwald, W., Kalbitzer, H.-R., Lang, E.: On the use of independent analysis to remove water artifacts of 2D NMR Protein Spectra. In: Proc. Bioeng 2003 (2003)

    Google Scholar 

  11. Vitols, C., Weljie, A.: Identifying and Quantifying Metabolites in Blood Serum and Plasma. Chenomx Inc., (2006)

    Google Scholar 

  12. Winter, M.E.: N-findr: an algorithm for fast autonomous spectral endmember determination in hyperspectral data. In: Proc. of the SPIE, vol. 3753, pp. 266–275 (1999)

    Google Scholar 

  13. Wu, W., Daszykowski, M., Walczak, B., Sweatman, B.C., Connor, S., Haselden, J., Crowther, D., Gill, R., Lutz, M.: Peak alignment of urine NMR spectra using fuzzy warping. J. Chem. Inf. Model. 46, 863–875 (2006)

    Article  Google Scholar 

  14. Yang, W., Wang, Y., Zhou, Q., Tang, H.: Analysis of human urine metabolites using SPE and NMR spectroscopy. Sci. China. Ser. B-Chem. 51, 218–225 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, Y., Xin, J. (2011). A Recursive Sparse Blind Source Separation Method for Nonnegative and Correlated Data in NMR Spectroscopy. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23678-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23678-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23677-8

  • Online ISBN: 978-3-642-23678-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics