Skip to main content

Violence Detection in Video Using Computer Vision Techniques

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6855))

Included in the following conference series:

Abstract

Whereas the action recognition community has focused mostly on detecting simple actions like clapping, walking or jogging, the detection of fights or in general aggressive behaviors has been comparatively less studied. Such capability may be extremely useful in some video surveillance scenarios like in prisons, psychiatric or elderly centers or even in camera phones. After an analysis of previous approaches we test the well-known Bag-of-Words framework used for action recognition in the specific problem of fight detection, along with two of the best action descriptors currently available: STIP and MoSIFT. For the purpose of evaluation and to foster research on violence detection in video we introduce a new video database containing 1000 sequences divided in two groups: fights and non-fights. Experiments on this database and another one with fights from action movies show that fights can be detected with near 90% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barla, A., Odone, F., Verri, A.: Histogram intersection kernel for image classification. In: Proceedings of ICIP, pp. 513–516 (2003)

    Google Scholar 

  2. Bregler, C.: Learning and recognizing human dynamics in video sequences. In: Proceedings of Computer Vision and Pattern Recognition (1997)

    Google Scholar 

  3. Chen, D., Wactlar, H., Chen, M., Gao, C., Bharucha, A., Hauptmann, A.: Recognition of aggressive human behavior using binary local motion descriptors. In: Engineering in Medicine and Biology Society, pp. 5238–5241 (20-25 2008)

    Google Scholar 

  4. Chen, M., Hauptmann, A.: MoSIFT: Recognizing human actions in surveillance videos. Tech. rep., Carnegie Mellon University, Pittsburgh, USA (2009)

    Google Scholar 

  5. Cheng, W.H., Chu, W.T., Wu, J.L.: Semantic context detection based on hierarchical audio models. In: Proceedings of the ACM SIGMM workshop on Multimedia information retrieval, pp. 109–115 (2003)

    Google Scholar 

  6. Clarin, C., Dionisio, J., Echavez, M., Naval, P.C.: DOVE: Detection of movie violence using motion intensity analysis on skin and blood. Tech. rep., University of the Philippines (2005)

    Google Scholar 

  7. Csurka, G., Dance, C., Fan, L.X., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision (2004)

    Google Scholar 

  8. Efros, A.A., Berg, A.C., Mori, G., Malik, J.: Recognizing action at a distance. In: IEEE International Conference on Computer Vision, pp. 726–733 (2003)

    Google Scholar 

  9. Giannakopoulos, T., Makris, A., Kosmopoulos, D., Perantonis, S., Theodoridis, S.: Audio-visual fusion for detecting violent scenes in videos. In: Konstantopoulos, S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.) SETN 2010. LNCS, vol. 6040, pp. 91–100. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Giannakopoulos, T., Kosmopoulos, D., Aristidou, A., Theodoridis, S.: Violence content classification using audio features. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plexousakis, D. (eds.) SETN 2006. LNCS (LNAI), vol. 3955, pp. 502–507. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Gong, Y., Wang, W., Jiang, S., Huang, Q., Gao, W.: Detecting violent scenes in movies by auditory and visual cues. In: Proceedings of the 9th Pacific Rim Conference on Multimedia, pp. 317–326. Springer, Heidelberg (2008)

    Google Scholar 

  12. Laptev, I.: On space-time interest points. International Journal of Computer Vision 64, 107–123 (2005)

    Article  Google Scholar 

  13. Laptev, I., Lindeberg, T.: Space-time interest points. In: Proceedings of International Conference on Computer Vision, pp. 432–439 (2003)

    Google Scholar 

  14. Lewis, D.: Naive Bayes at Forty: The independence assumption in information retrieval. In: European Conference on Machine Learning, pp. 4–15 (1998)

    Google Scholar 

  15. Lin, J., Wang, W.: Weakly-supervised violence detection in movies with audio and video based co-training. In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds.) PCM 2009. LNCS, vol. 5879, pp. 930–935. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Lopes, A.P.B., do Valle Jr., E.A., de Almeida, J.M., de Albuquerque AraĂşjo, A.: Action recognition in videos: from motion capture labs to the web. CoRR abs/1006.3506 (2010)

    Google Scholar 

  17. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(91) (2004)

    Google Scholar 

  18. Nam, J., Alghoniemy, M., Tewfik, A.: Audio-visual content-based violent scene characterization. In: Proceedings of ICIP, pp. 353–357 (1998)

    Google Scholar 

  19. Zajdel, W., Krijnders, J., Andringa, T., Gavrila, D.: CASSANDRA: audio-video sensor fusion for aggression detection. In: IEEE Conference on Advanced Video and Signal Based Surveillance, AVSS 2007, pp. 200–205 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bermejo Nievas, E., Deniz Suarez, O., Bueno GarcĂ­a, G., Sukthankar, R. (2011). Violence Detection in Video Using Computer Vision Techniques. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23678-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23678-5_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23677-8

  • Online ISBN: 978-3-642-23678-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics