A Parallel Implementation of the Thresholding Problem by Using Tissue-Like P Systems

  • Francisco Peña-Cantillana
  • Daniel Díaz-Pernil
  • Ainhoa Berciano
  • Miguel Angel Gutiérrez-Naranjo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6855)

Abstract

In this paper we present a parallel algorithm to solve the thresholding problem by using Membrane Computing techniques. This bio-inspired algorithm has been implemented in a novel device architecture called CUDATM, (Compute Unified Device Architecture). We present some examples, compare the obtained time and present some research lines for the future.

Keywords

Parallel Implementation Graphical Card Device Architecture Graphic Processor Unit Communication Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ceterchi, R., Gramatovici, R., Jonoska, N., Subramanian, K.G.: Tissue-like P systems with active membranes for picture generation. Fundamenta Informaticae 56(4), 311–328 (2003)MATHGoogle Scholar
  2. 2.
    Chao, J., Nakayama, J.: Cubical singular simplex model for 3D objects and fast computation of homology groups. In: 13th International Conference on Pattern Recognition (ICPR 1996), vol. IV, pp. 190–194. IEEE Computer Society, Los Alamitos (1996)CrossRefGoogle Scholar
  3. 3.
    Christinal, H.A., Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Thresholding of 2D images with cell-like P systems. Romanian Journal of Information Science and Technology (ROMJIST) 13(2), 131–140 (2010)Google Scholar
  4. 4.
    Christinal, H.A., Díaz-Pernil, D., Real, P.: Segmentation in 2D and 3D image using tissue-like P system. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 169–176. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Molina-Abril, H., Real, P.: A bio-inspired software for segmenting digital images. In: Nagar, A.K., Thamburaj, R., Li, K., Tang, Z., Li, R. (eds.) Proceedings of the 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications BIC-TA, vol. 2, pp. 1377–1381. IEEE Computer Society, Los Alamitos (2010)CrossRefGoogle Scholar
  6. 6.
    Hamadani, N.: Automatic target cueing in IR imagery. Master’s thesis, Air Force Institute of Technology, WAFP (December 1981)Google Scholar
  7. 7.
    Liao, P.S., Chen, T.S., Chung, P.C.: A fast algorithm for multilevel thresholding. Journal of Information Scence and Engineering 17(5), 713–727 (2001)Google Scholar
  8. 8.
    Martín-Vide, C., Păun, G., Pazos, J., Rodríguez-Patón, A.: Tissue P systems. Theoretical Computer Science 296(2), 295–326 (2003)CrossRefMATHGoogle Scholar
  9. 9.
    Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with cuda. Queue 6, 40–53 (2008)CrossRefGoogle Scholar
  10. 10.
    Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU Computing. Proceedings of the IEEE 96(5), 879–899 (2008)CrossRefGoogle Scholar
  11. 11.
    Păun, A., Păun, G.: The power of communication: P systems with symport/antiport. New Generation Computing 20(3), 295–306 (2002)CrossRefMATHGoogle Scholar
  12. 12.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)MATHGoogle Scholar
  13. 13.
    Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall PTR, Upper Saddle River (2001)Google Scholar
  14. 14.
    NVIDIA Corporation. NVIDIA CUDATM Programming Guide, http://www.nvidia.com/object/cuda_home_new.html
  15. 15.
    P system web page, http://ppage.psystems.eu

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Francisco Peña-Cantillana
    • 1
  • Daniel Díaz-Pernil
    • 2
  • Ainhoa Berciano
    • 2
    • 3
  • Miguel Angel Gutiérrez-Naranjo
    • 1
  1. 1.Research Group on Natural Computing - Dept. of Computer Science and AIUniversity of SevilleSpain
  2. 2.CATAM Research Group - Dept. of Applied Mathematics IUniversity of SevilleSpain
  3. 3.Departament of Didactic of Mathematics and Experimental SciencesUniversity of the Basque CountrySpain

Personalised recommendations