Advertisement

Object Recognition with the HOSVD of the Multi-model Space-Variant Pattern Tensors

  • Bogusław Cyganek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6854)

Abstract

The paper presents a framework for object recognition with the multi- model space-variant approach in the log-polar domain built into the multilinear tensor classifier. Thanks to this the method allows recognition of rotated and/or scaled objects taking advantage of the foveal and peripheral information. Recognition is done in the multilinear subspaces obtained after the higher-order singular value decomposition of the pattern tensor. The experiments show high accuracy and robustness of the proposed method.

Keywords

Object Recognition Test Pattern Road Sign Core Tensor Multiple Model Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chiang, C.-C., Tai, W.-K., Yang, M.-T., Huang, Y.-T., Huang, C.-J.: A novel method for detecting lips, eyes and faces in real time. Real-Time Imaging 9, 277–287 (2003)CrossRefGoogle Scholar
  2. 2.
    Cyganek, B.: Circular Road Signs Recognition with Soft Classifiers. Integrated Computer-Aided Engineering 14(4), 323–343 (2007)Google Scholar
  3. 3.
    Cyganek, B., Siebert, J.P.: An Introduction to 3D Computer Vision Techniques and Algorithms. Wiley, Chichester (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cyganek, B.: An Analysis of the Road Signs Classification Based on the Higher-Order Singular Value Decomposition of the Deformable Pattern Tensors. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010, Part II. LNCS, vol. 6475, pp. 191–202. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Jurie, F.: A new log-polar mapping for space variant imaging. Application to face detection and tracking. Pattern Recognition 32, 865–875 (1999)CrossRefGoogle Scholar
  6. 6.
    de Lathauwer, L.: Signal Processing Based on Multilinear Algebra. PhD dissertation, Katholieke Universiteit Leuven (1997) Google Scholar
  7. 7.
    de Lathauwer, L., Moor de, B., Vandewalle, J.: A Multilinear Singular Value Decomposition. SIAM Journal of Matrix Analysis and Applications 21(4), 1253–1278 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    D’Orazio, T., Leo, M., Guaragnella, C., Distante, A.: A visual approach for driver inattention detection. Pattern Recognition 40, 2341–2355 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Savas, B., Eldén, L.: Handwritten digit classification using higher order singular value decomposition. Pattern Recognition 40, 993–1003 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Traver, V.J., Bernardino, A., Moreno, P., Santos-Victor, J.: Appearance-based object detection in space-variant images: A multi-model approach. In: Campilho, A., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 538–546. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensembles: TensorFaces. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 447–460. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Zhu, Z., Jib, Q.: Robust real-time eye detection and tracking under variable lighting conditions and various face orientations. Computer Vision and Image Understanding 98, 124–154 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bogusław Cyganek
    • 1
  1. 1.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations