Hierarchical Representation of Discrete Data on Graphs

  • Moncef Hidane
  • Olivier Lézoray
  • Abderrahim Elmoataz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6854)


We propose a new hierarchical representation of discrete data sets living on graphs. The approach takes advantage of recent works on graph regularization. The role of the merging criterion that is common to hierarchical representations is greatly reduced due to the regularization step. The regularization is performed recursively with a decreasing fidelity parameter. This yields a robust representation of data sets. We show experiments on digital images and image databases.


Weighted Graph Discrete Data Hierarchical Representation Graph Regularization Total Variation Regularization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weickert, J.: Anisotropic Diffusion in Image Processing. ECMI Series. Teubner (1998)Google Scholar
  2. 2.
    Mallat, S.: Wavelet Tour of Signal Processing, 3rd edn. The Sparse Way. Academic Press, London (2008)zbMATHGoogle Scholar
  3. 3.
    Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Transactions on Image Processing 17, 1047–1060 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lezoray, O., Ta, V.T., Elmoataz, A.: Partial differences as tools for filtering data on graphs. Pattern Recognition Letters 31, 2201–2213 (2010)CrossRefGoogle Scholar
  5. 5.
    Brun, L., Kropatsch, W.: Irregular pyramids with combinatorial maps. In: Amin, A., Pudil, P., Dori, D. (eds.) SPR 1998 and SSPR 1998. LNCS, vol. 1451, pp. 256–265. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Modeling and Simulation 7, 1005–1028 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Peyré, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 57–68. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Yun, S., Woo, H.: Linearized proximal alternating minimization algorithm for motion deblurring by nonlocal regularization. Pattern Recogn. 44 (2011)Google Scholar
  9. 9.
    Hidane, M., Lezoray, O., Ta, V., Elmoataz, A.: Nonlocal multiscale hierarchical decomposition on graphs. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 638–650. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20 (2004)Google Scholar
  11. 11.
    Chan, T.F., Osher, S., Shen, J.: The digital TV filter and nonlinear denoising. IEEE Transactions on Image Processing 10, 231–241 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Black, M., Sapiro, G.: Edges as outliers: Anisotropic smoothing using local image statistics. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 259–270. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Nielsen, F., Nock, R.: Fast graph segmentation based on statistical aggregation phenomena. In: Ikeuchi, K. (ed.) Proceedings of the 10th IAPR Conference on Machine Vision Applications (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Moncef Hidane
    • 1
  • Olivier Lézoray
    • 1
  • Abderrahim Elmoataz
    • 1
  1. 1.ENSICAEN, CNRS, GREYC Image TeamUniversité de Caen Basse-NormandieCaen CedexFrance

Personalised recommendations