Alternating Scheme for Supervised Parameter Learning with Application to Image Segmentation

  • Lucas Franek
  • Xiaoyi Jiang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6854)


This paper presents a novel alternating scheme for supervised parameter learning. While in previous methods parameters were optimized simultaneously, we propose to optimize parameters in an alternating way. In doing so the computational amount is reduced significantly. The method is applied to four image segmentation algorithms and compared with exhaustive search and a coarse-to-fine approach. The results show the efficiency of the proposed scheme.


Image Segmentation Exhaustive Search Segmentation Algorithm Normalize Mutual Information Computational Amount 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Christoudias, C.M., Georgescu, B., Meer, P., Georgescu, C.M.: Synergism in low level vision. In: Proc. of Int. Conf. on Pattern Recognition, pp. 150–155 (2002)Google Scholar
  2. 2.
    Deng, Y., Manjunath, B.S.: Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. Pattern Anal. Mach. Intell. 23, 800–810 (2001)CrossRefGoogle Scholar
  3. 3.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Computer Vision 59, 167–181 (2004)CrossRefGoogle Scholar
  4. 4.
    Jiang, X.: An adaptive contour closure algorithm and its experimental evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1252–1265 (2000)CrossRefGoogle Scholar
  5. 5.
    Jiang, X., Irniger, C., Bunke, H.: Training/test data partitioning for empirical performance evaluation. In: Christensen, H.I., Phillips, P.J. (eds.) Empirical Evaluation Methods in Computer Vision, pp. 23–37. World Scientific, Singapore (2002)CrossRefGoogle Scholar
  6. 6.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. ICCV, vol. 2, pp. 416–423 (2001)Google Scholar
  7. 7.
    Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26, 530–539 (2004)CrossRefGoogle Scholar
  8. 8.
    Min, J., Powell, M., Bowyer, K.W.: Automated performance evaluation of range image segmentation algorithms. IEEE Trans. Systems Man and Cybernetics - Part B: Cybernetics 34, 263–271 (2004)CrossRefGoogle Scholar
  9. 9.
    Rehrmann, V., Priese, L.: Fast and robust segmentation of natural color scenes. In: Proc. of Third Asian Conf. on Computer Vision, vol. 1, pp. 598–606 (1997)Google Scholar
  10. 10.
    Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. on Machine Learning Research 3, 583–617 (2002)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward objective evaluation of image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 29, 929–944 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lucas Franek
    • 1
  • Xiaoyi Jiang
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of MünsterMünsterGermany

Personalised recommendations