Possible Occurrence of Hyperbolic Attractors

  • Sergey P. Kuznetsov


In this chapter we review some situations considered or mentioned in literature that may have relation to occurrence of uniformly hyperbolic attractors in dynamical systems represented by maps or differential equations. To date, the approaches under discussion are developed to different extents. Only few of them are elaborated up to such degree that may allow illustrating on a level of numerical computations. Nevertheless, the collected material is of undoubted significance for prospects of search for real-world systems with uniformly hyperbolic attractors or design of physical and technical devices operating due to the presence of such attractors.


Lyapunov Exponent Lorenz Attractor Weierstrass Function Lorenz Model Hyperbolic Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M., Slegun, I.A. (eds.): Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. National Bureau of Standards USA (1972).Google Scholar
  2. Afraimovich, V.S., Bykov, V.V., Shilnikov, L. P.: Origin and structure of the Lorenz attractor. Akad. Nauk SSSR Doklady 234, 336–339 (1977).ADSGoogle Scholar
  3. Aidarova, Yu.S., Kuznetsov, S.P.: Chaotic dynamics of the Hunt model, an artificially constructed flow system with a hyperbolic attractor. Preprint. arXiv: 0901.2727 (2009).Google Scholar
  4. Akhiezer. N.I.: Elements of the Theory of Elliptic Functions. American Mathematical Society, Providence, RI (1990).Google Scholar
  5. Alligood, K., Sauer, T., Yorke, J.A.: Chaos. An Introduction to Dynamical Systems. Springer-Verlag, New York (1996).zbMATHGoogle Scholar
  6. Anosov, D.V.: Geodesic flows on closed Riemannian manifolds of negative curvature. Trudy Mat. Inst. Sleklov 90, 3–210 (1967).MathSciNetGoogle Scholar
  7. Balazs, N.L., Voros, A.: Chaos on the pseudosphere. Physics Reports 143, 109–240 (1986).MathSciNetADSCrossRefGoogle Scholar
  8. Belykh, V., Belykh, I., Mosckildc, E.: The hyperbolic Plykin attractor can exist in neuron models. Int. J. of Bifurcation and Chaos 15, 3567–3578 (2005).zbMATHCrossRefGoogle Scholar
  9. Coudene, Y.: Pictures of hyperbolic dynamical systems. Notices of the American Mathematical Society 53, 8–13 (2006).MathSciNetzbMATHGoogle Scholar
  10. Gavrilov, N.K., Shilnikov, A.L.: An example of blue sky catastrophe. In: Methods of qualitative-theory of differential equations and related topics. Amer. Math. Soc. Transl., II Ser. 200, pp. 165–188. AMS, Providence, RI (1999).Google Scholar
  11. Glyzin, S.D., Kolesov, A.Yu., Rozov, N.Kh.: Blue Sky Catastrophe in Relaxation Systems with One Fast and Two Slow Variables. Differential Equations 44, 161–175 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  12. Gonzalez-Miranda, J.M.: Complex bifurcation structures in the Hindmarsh-Rose neuron model. Int. J. Bifurcation and Chaos 17, 3071–3083 (2007).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. Guckenheimer. J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York (1983).zbMATHGoogle Scholar
  14. Halbert, J.T., Yorke, J.A.: Modeling a chaotic machine’s dynamics as a linear map on a “square sphere”, (2003).
  15. Hasselblatt, B., Katok, A.A.: First Course in Dynamics: with a Panorama of Recent Developments. Cambridge University Press, Cambridge (2003).zbMATHGoogle Scholar
  16. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. Roy. Soc. London. Ser. B, Biological Sciences. 221(1222), 87–102 (1984).ADSCrossRefGoogle Scholar
  17. Hunt, T.J.: Low Dimensional Dynamics: Bifurcations of Cantori and Realisations of Uniform Hyperbolicity. PhD Thesis. Univercity of Cambridge (2000).Google Scholar
  18. Hunt, T.J., MacKay, R.S.: Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor. Non linearity 16, 1499–1510 (2003).MathSciNetADSzbMATHGoogle Scholar
  19. Ilyashenko, Y.S.: Attractors and their fractal dimension. MCCMF, Moscow (2005).Google Scholar
  20. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge-University Press, Cambridge (1995).zbMATHGoogle Scholar
  21. Kuznetsov, S.P.: Plykin-type attractor in nonautonomous coupled oscillators. Chaos 19. 013114 (2009).MathSciNetADSCrossRefGoogle Scholar
  22. Kuznetsov, S.P.: Example of blue sky catastrophe accompanied by a birth of Smale-Williams attractor. Regular and Chaotic Dynamics 15, 348–353 (2010).MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. Lopez, A.O.: An Example of Polynomial Interpolation of an Hyperbolic Attractor. In: Lecture Notes in Mathematics 1007, pp. 498–511. Springer-Verlag, Berlin (1983).Google Scholar
  24. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).ADSCrossRefGoogle Scholar
  25. MacKay, R.S.: Chaos in three physical systems. In: Dumorlier, P., Broer, H., Mawhin, J., Vanderbauvohede. A., Verduyn Lunel S. (eds) Equadiff 2003. pp. 59–72, World Science Press, Singapore (2005).Google Scholar
  26. MacKay, R.S.: Complicated dynamics from simple topological hypotheses. Phil. Trans. R. Soc. Lond. A 359, 1479–1496 (2001).MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. Vanderbauwhede, A., Verduyn Lunel S. (eds.) Equadiff 2003, pp. 59–72. World Science Press, Singapore (2005)zbMATHGoogle Scholar
  28. Morales, C.A.: Lorenz attractor through saddle-node bifurcations. Ann. de l’lnst. Henri Poincaré 13, 589–617 (1996).zbMATHGoogle Scholar
  29. Newhouse. S., Ruelle, D., Takens. F.: Occurrence of strange Axiom-A attractors near quasi periodic flows on Tm. m⪴ 3. Comm. Math. Phys. 64, 35–40 (1978).MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002).zbMATHGoogle Scholar
  31. Ruelle, D., Takens, F: On the-nature of turbulence Commun. Math. Phys. 20, 167–192 (1971).MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. Schuster, H.G., Just, W.: Deterministic Chaos: An Introduction. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG (2005).zbMATHCrossRefGoogle Scholar
  33. Shilnikov, A., Cymbalyuk, G.: Transition between tonic spiking and bursting in a neuron model via the blue-sky calastrophe. Phys. Rev. Lett. 94, 048101 (2005).ADSCrossRefGoogle Scholar
  34. Shilnikov, A., Kolomiets, M.: Methods of the qualitative theory for the Hindmarsh-Rose model: a case study. Int. J. Bifurcation and Chaos 18, 2141–2168 (2008).MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. Shilnikov, L.P., Turaev, D.V.: Simple bifurcations leading to hyperbolic attractors. Computers Math. Appl. 34, 173–193 (1997).MathSciNetCrossRefGoogle Scholar
  36. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer-Verlag, New York, Heidelberg, Berlin (1982).zbMATHCrossRefGoogle Scholar
  37. Thurston, W.P., Weeks, J.R.: The mathematics of three-dimensional manifolds. Sci. Am. 251, 94–106 (1984).CrossRefGoogle Scholar
  38. Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Comp. Math. 2, 53–117 (2002).zbMATHGoogle Scholar
  39. Turaev. D.V., Shilnikov, L.P.: On blue sky catastrophes. Doklady Akademii Nauk 342, 596–599 (1995).MathSciNetGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sergey P. Kuznetsov
    • 1
  1. 1.Kotel’nikov’s Institute of Radio-Engineering and Electronics of RASSaratov BranchSaratovRussian Federation

Personalised recommendations