Micromechanical Analysis of Mode I Crack Growth in Carbon Fibre Reinforced Polymers

  • Daniel Trias
  • Pere Maimí
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 17)


Computational micromechanics models offer the possibility of analysis and quantification of the failure mechanisms that take place at the micro-scale level and are the responsible of the damage in the composite with high accuracy and with the need for very few hypotheses. Although these kind of analyses are common in current scientific literature, the analysis performed are generally limited to the stress/strain fields. This work makes use of a micromechanical model to analyze the crack tip and the cohesive zone of an interlaminar crack loaded in mode I for a carbon fiber reinforced polymer (CFRP). A periodic square fibre distribution is assumed and modelled in a FE environment and a degradation law is used to simulate damage in the matrix. This simulation allows both stress and strain quantification during crack opening and fracture mechanics analysis, such as the estimation of the critical value of the energy release rate and the quantification of the length of the cohesive zone, which is a parameter required for the application of cohesive elements.


Fibre Reinforce Polymer Cohesive Zone Carbon Fiber Reinforce Polymer Damage Variable Double Cantilever Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the funding provided by the Spanish Ministry of Science and Innovation (MICINN) through research projects GRINCOMP (reference MAT2003-09768-C03-01) and EVISER2 (reference DPI2009-08048).


  1. 1.
    Allix, O., Corigliano, A.: Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens. Int. J. Fract. 77(2), 111–140 (1996)CrossRefGoogle Scholar
  2. 2.
    Asp, L.E., Berglund, L.A., Gudmunson, P.: Effects of a composite-like stress state on the fracture of epoxies. Compos. Sci. Technol. 53(1), 27–37 (1995)CrossRefGoogle Scholar
  3. 3.
    Asp, L.E., Berglund, L.A., Talreja, R.: A criterion for crack initiation in glassy polymers subjected to a composite-like stress state. Compos. Sci. Technol. 56(11), 1291–1301 (1996)CrossRefGoogle Scholar
  4. 4.
    Asp, L.E., Berglund, L.A., Talreja, R.: Prediction of matrix-initiated transverse failure in polymer composites. Compos. Sci. Technol. 56(9), 1089–1097 (1996)CrossRefGoogle Scholar
  5. 5.
    American Standard Test Methods (ASTM).: Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM D5528-01 (2001)Google Scholar
  6. 6.
    Barenblatt, G.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Borg, R., Nilsson, L., Simonsson, K.: Modeling of delamination using a discretized cohesive zone and damage formulation. Compos. Sci. Technol. 62(10-11), 1299–1314 (2002)CrossRefGoogle Scholar
  8. 8.
    Chen, J., Crisfield, M., Kinloch, A.J., Busso, E.P., Matthews, F.L., Qiu, Y.: Predicting progressive delamination of composite material specimens via interface elements. Mech. Compos. Mater. Struct. 6(4), 301–317 (1999)Google Scholar
  9. 9.
    Crews, J.H., Shivakumar, K.N., Raju, I.S.: Factors influencing elastic stresses in double cantilever beam specimens. NASA Technical Memorandum 89033 (1986)Google Scholar
  10. 10.
    Crews, J.H., Shivakumar, K.N., Raju, I.S.: A fiber-resin micromechanics analysis of the delamination front in a DCB specimen. NASA Technical Memorandum 100540 (1988)Google Scholar
  11. 11.
    Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)CrossRefGoogle Scholar
  12. 12.
    Falk, M.L., Needleman, A., Rice, J.R.: A critical evaluation of cohesive zone models of dynamic fracture. J. Phys. IV, 543–550 (2001)Google Scholar
  13. 13.
    Fiedler, B., Hojo, M., Ochiai, S., Schulte, K., Ando, M.: Failure behavior of an epoxy matrix under different kinds of static loading. Compos. Sci. Technol. 61(11), 1615–1624 (2001)CrossRefGoogle Scholar
  14. 14.
    Gdoutos, E.E.: Fracture Mechanis Criteria and Applications. Kluwer, Dordrecht (1990)CrossRefGoogle Scholar
  15. 15.
    Greenhalgh, E.S.: Delamination growth in carbon-fibre composite structures. Compos. Struct. 23(2), 165–175 (1993)CrossRefGoogle Scholar
  16. 16.
    Hillerborg, A., Modéer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773–782 (1976)CrossRefGoogle Scholar
  17. 17.
    Hui, C.Y., Jagota, A., Bennison, S.J., Londono, J.D.: Crack blunting and the strength of soft elastic solids. Proc. R. Soc. Lond. Ser. A. 459, 1489–1516 (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Hunston, Moulton et al.: Matrix resin effects in composite delamination. In: Johnston N.J. (ed.) Toughned Composites. ASTM STP vol. 937, pp. 74–94. ASTM International, West Conshohocken, Philadelphia, USA (1987)Google Scholar
  19. 19.
    Irwin, G.R.: Plastic zone near a crack and fracture toughness. In: Proceedings of the Seventh Sagamore Ordnance Materials Conference, vol. 4, pp. 63–78. Syracuse University, New York (1960)Google Scholar
  20. 20.
    International Standards Organization (ISO).: Standard test Method for Mode I Interlaminar Fracture Toughness, GIC, of Unidirectional fibre-reinforced Polymer Matrix Composites. ISO 15024 (2001)Google Scholar
  21. 21.
    Krüger, R.: The Virtual Crack Closure Technique: History, Approach and Applications. NASA/CR-2002-211628. NASA/CR-2002-211628 (2002)Google Scholar
  22. 22.
    Krüger, R., Cvitkovich, M.K., O’Brien, T.K., Minguet, P.J.: Testing and analysis of composite skin/stringer debonding under multi-axial loading. J. Compos. Mater. 34(15), 1263–1300 (2000)Google Scholar
  23. 23.
    Ladevéze, P., Allix, O., Gornet, L., Lèveque, D.: A computational damage mechanics approach for laminates: identification and comparisons with experimental results. In: Voyiadkjis, G.Z., Ju, J.W.W., Chaboche, J.L. (eds.): Damage Mechanics in Engineering Materials, pp. 481–499. Elsevier Science B.V., North Holland (1998)Google Scholar
  24. 24.
    Liang, Y.-M., Liechti, K.M.: On the large deformation and localization behavior of an epoxy resin under multiaxial stress states.. Int. J. Solids Struct. 33(10), 1479–1500 (1996)CrossRefGoogle Scholar
  25. 25.
    Rice J.: The mechanics of earthquake rupture, physics of the earth’s interior. In: Dziewonski, A.M., Boschi, E. (eds.) Proceedings of the International School of Physics Enrico Fermi, Course 78, 1979, pp. 555–649, Italian Physical Society and North-Holland (1980)Google Scholar
  26. 26.
    Turon, A., Camanho, P.P., Costa, J., Dávila, C.G.: A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 38(11), 1072–1089 (2006)CrossRefGoogle Scholar
  27. 27.
    Turon, A., Costa, J., Camanho, P., Maimí, P.: Analytical and Numerical Investigation of the Length of the Cohesive Zone in Delaminated Composite in Mechanical Response of Composites, pp. 77–97. Springer, Heidelberg (2008)Google Scholar
  28. 28.
    Maugin, G. A.: The Thermomechanics of Nonlinear Irreversible Behaviors.An Introduction. World Scientific Publishing, London (1999).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Analysis and Advanced Materials for the Structural Design (AMADE)University of GironaGironaSpain

Personalised recommendations