Advertisement

Study of the Supercavitating Body Dynamics

  • V. N. Semenenko
  • Ye. I. Naumova
Chapter

Abstract

In this paper, the results of investigations of dynamics of supercavitating (SC) bodies are presented, which were performed by authors in cooperation with Yu.N. Savchenko. Computer simulation of the SC-body motion based on the G.V. Logvinovich principle of independence of supercavity section expansion [1, 2] is the main research method. A general problem of the three-dimensional (3D) motion of the SC-body is formulated. Special cases of both the longitudinal and the lateral motion of SC-bodies are considered. Problems of the motion stability and optimization of SC-bodies moving on inertia on the arbitrary angle to the horizon are investigated. It is shown that the SC-vehicle motion in the regime of planing within a cavity is unstable on the depth. A comparative analysis of stabilization and control of motion (maneuverability) of SC-vehicles by inclination of the cavitator having two degrees of freedom and by the vectoring thrust is given.

In this paper, some materials from the works [3–9] were used, a part of the results were represented on the International conferences [10–13].

Keywords

Automatic Control System Cavity Wall Longitudinal Motion Thrust Vector Fixed Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Logvinovich GV. Hydrodynamics of flows with free boundaries. Kiev: Naukova dumka; 1969. 208p. (In Russian). English translation: Halsted Press, 1973.Google Scholar
  2. 2.
    Logvinovich GV. Problems of the theory of slender axisymmetric cavities. Trudy TsAGI. 1976;1797:3–17 (In Russian).Google Scholar
  3. 3.
    Savchenko YuN, Vlasenko YuD, Semenenko VN. Experimental investigations of high-speed cavitation flows. Hidromehanika. 1998;72:103–11. (In Russian). English translation: Int J Fluid Mech Res. 1999;26(3):365–74.Google Scholar
  4. 4.
    Savchenko YuN, Semenenko VN, Putilin SI. Unsteady processes in supercavitation motion of bodies. Prykladna hidromehanika. 1999;1(1):62–80. (In Russian). English translation: Int J Fluid Mech Res. 2000;27(1):109–37.Google Scholar
  5. 5.
    Semenenko VN. Computer simulation of dynamics of supercavitatating bodies. Prykladna Hidromehanika. 2000;2(1):64–9 (In Russian).Google Scholar
  6. 6.
    Nesteruk IG, Semenenko VM. Optimization problems for supercavitation inertial motion of axisymmetric bodies. Prykladna Hidromehanika. 2006;8(1):51–9 (In Ukrainian).zbMATHGoogle Scholar
  7. 7.
    Nesteruk IG, Savchenko YuM, Sememenko VM. Optimization of the range for the supercavitation motion on inertia. Dopovidi NAN Ukrainy. 2006;8:57–66 (In Ukrainian).Google Scholar
  8. 8.
    Semenenko VN. Modelling the longitudinal motion of the underwater supercavitating vehicles. Prykladna Hidromehanika. 2010;12(4):81–8 (In Russian).Google Scholar
  9. 9.
    Savchenko YuN, Semenenko VN. On the course maneuvering the underwater supercavitating vehicle. Prykladna Hidromehanika. 2011;13(1):43–50 (In Russian).Google Scholar
  10. 10.
    Savchenko YuN, Semenenko VN, Putilin SI, et al. Designing the high-speed supercavitating vehicles. Proceedings of the 8th International Conference on Fast Sea Transportation (FAST’2005). St. Petersburg; 2005.Google Scholar
  11. 11.
    Savchenko YuN, Semenenko VN, Putilin SI, et al. Some problems of the supercavitating motion management. Sixth International Symposium on Cavitation CAV2006. Wageningen; 2006.Google Scholar
  12. 12.
    Nesteruk IG, Savchenko YuN, Semenenko VN. Achievement of maximal range of supercavitating body inertial motion. Proceedings of the International conference on subsea technologies (SubSeaTECH2007); June 25–28, 2007. St. Petersburg; 2007.Google Scholar
  13. 13.
    Semenenko VN. Some problems of supercavitating vehicle designing. Proceedings of the International Conference on superfast marine vehicles moving above, under and in water surface (SuperFAST’2008); 2–4 July 2008. St. Petersburg; 2008.Google Scholar
  14. 14.
    Savchenko YuN. Experimental investigation of supercavitating motion of bodies. VKI/RTO Special Course on Supercavitation. Von Karman Institute for Fluid Dynamics. Brussels; 2001. (Belgium).Google Scholar
  15. 15.
    Savchenko YuN. Control of supercavitation flow and stability of supercavitating motion of bodies. VKI/RTO Special Course on Supercavitation. Von Karman Institute for Fluid Dynamics. Brussels; 2001. (Belgium).Google Scholar
  16. 16.
    Savchenko YuN. Supercavitating object propulsion. VKI/RTO Special Course on Supercavitation. Von Karman Institute for Fluid Dynamics. Brussels; 2001. (Belgium).Google Scholar
  17. 17.
    Semenenko VN. Artificial supercavitation. Physics and calculation. VKI/RTO Special Course on Supercavitation. Von Karman Institute for Fluid Dynamics, Brussels; 2001. (Belgium).Google Scholar
  18. 18.
    Semenenko VN. Dynamic processes of supercavitation and computer simulation. VKI/RTO Special Course on Supercavitation. Von Karman Institute for Fluid Dynamics. Brussels; 2001. (Belgium).Google Scholar
  19. 19.
    Logvinovich GV. Some problems of planing. Trudy TsAGI. 1980;2052:3–12 (In Russian).Google Scholar
  20. 20.
    Savchenko YuN. Investigations of supercavitation flows. Prykladna Hidromehanika. 2007;9(2–3):150–8 (In Russian).zbMATHGoogle Scholar
  21. 21.
    Kulkarni SS, Pratar R. Studies on the dynamics of a supercavitating projectiles. Appl Math Model. 2000;24(2):113–29.zbMATHCrossRefGoogle Scholar
  22. 22.
    Abe A, Katayama M, Saito T, Takayama K. Numerical simulation on supercavitation and jawing of a supersonic projectile traveling in water. Symposium on Interdisciplinary Shock Wave Research. Sendai; March 22–24, 2004.Google Scholar
  23. 23.
    Lindau JW, Kunz RF, Mulherin JM, Dreyer JJ, Stinebring DR. Fully coupled, 6-DOF to URANS, modelling of cavitating flows around a supercavitating vehicle. Fifth International Symposium on Cavitation CAV2006. Osaka; 2003Google Scholar
  24. 24.
    Kirschner I, Rosenthal BJ, Uhlman JS. Simplified dynamical systems analysis of supercavitating high-speed bodies. Fifth International Symposium on Cavitation CAV2006. Osaka; 2003.Google Scholar
  25. 25.
    Kirschner IN, Kring DC, Stokes AW, Fine NE, Uhlman JS. Control strategies for supercavitating vehicles. J Vib Control. 2002;8:219–42.zbMATHCrossRefGoogle Scholar
  26. 26.
    Dzielski J, Kurdila A. A benchmark control problem for supercavitating vehicles and an initial investigation of solution. J Vib Control. 2003;19(7):791–804.CrossRefGoogle Scholar
  27. 27.
    Ruzzene M, Kamada R, Botasso CL, Scorceletti F. Trajectory optimization strategies for supercavitating undervater vehicles. J Vib Control. 2008;14(5):611–44.zbMATHCrossRefGoogle Scholar
  28. 28.
    Botasso CL, Scorceletti F. Trajectory optimization for DDE models of supercavitating undervater vehicles. Online preprint; 2008. http://www.aero.polimi.it/~bottasso/.
  29. 29.
    Balas GJ, Bokor J, Vanek B, Arndt REA. Control of high-speed undervater vehicles. In: B.A. Francis et al. (eds.) Control of uncertain systems. Berlin/Heidelberg: Springer-Verlag; 2006. p. 25–44.Google Scholar
  30. 30.
    Vanek B, Bokor J, Balas GJ, Arndt REA. Longitudinal motion control of a high-speed supercavitation vehicle. J Vib Control. 2007;13(2):159–84.zbMATHCrossRefGoogle Scholar
  31. 31.
    Lin G, Balachndran B, Abed EH. Nonlinear dynamics and bifurcations of a supercavitating vehicle. IEEE J Ocean Eng. 2007;32(4):753–61.CrossRefGoogle Scholar
  32. 32.
    Lin G, Balachandran B, Abed E. Dynamics and control of supercavitating vehicles. J Dynam Syst Meas Control. 2008;130(2):1–11.Google Scholar
  33. 33.
    Li DJ, Zhang YW, Luo K, Dang JJ. Motion control of underwater supercavitating projectiles in vertical plane. Mod Appl Sci. 2009;3(2):60–5.Google Scholar
  34. 34.
    Li DJ, Luo K, Zhang YW, Dang JJ. Studies on fixed-depth control of supercavitating vehicles. Acta Automatica Sinica. 2010;36(3):421–6.CrossRefGoogle Scholar
  35. 35.
    Polyahov NN, Zegzhda SA, Yushkov MP. Theoretical mechanics. Moscow: Vysshaya shkola; 2000 (In Russian).Google Scholar
  36. 36.
    Lukomskiy YuA, Chugunov VS. Systems of controls of marine vehicles. Leningrad: Sudostroenie; 1988 (In Russian).Google Scholar
  37. 37.
    Logvinovich GV, Serebryakov VV. On the methods of calculating a shape of the slender axisymmetric cavities. Hidromehanika. 1975;32:47–54 (In Russian).Google Scholar
  38. 38.
    Buyvol VN. Slender cavities in flows with perturbations. Kiev: Naukova Dumka; 1980 (In Russian).Google Scholar
  39. 39.
    Vasin AD, Paryshev EV. Immersion of a cylinder in liquid through a cylindrical free surface. Izvestiya AN SSSR, Mehanika zhidkosti i gasa. 2001;2:3–12 (In Russian).Google Scholar
  40. 40.
    Schlichting H. Boundary layer theory. New York: McGraw-Hill; 1961.Google Scholar
  41. 41.
    Putilin SI. Some features of a supercavitating model dynamics. Prykladna hidromehanika. 2000;2(3):65–74 (In Russian). English translation: Int J Fluid Mech Res. 2001;28(5):631–43.Google Scholar
  42. 42.
    Nesteruk IG, Semenenko VM. Problems of optimization of a range of the supercavitation motion on inertia with a fixed final depth. Prykladna Hidromehanika. 2006;8(4):33–42 (In Ukrainian).zbMATHGoogle Scholar
  43. 43.
    Semenenko VN. Computer simulation of pulsations of ventialed supecavities. Hidromehanika. 1997;71:110–8. (In Russian). English translation: Int J Fluid Mech Res. 1996;23(3 & 4):302–12.Google Scholar
  44. 44.
    Savchenko YuN. Perspectives of the supercavitation flow applications. Proceedings of the International Conference on Superfast Marine Vehicles Moving Above, Under and in Water Surface (SuperFAST’2008); 2–4 July 2008. St. Petersburg; 2008.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Hydromechanics of NASUKyivUkraine

Personalised recommendations