Localized Hybridization Circuits

  • Harish Chandran
  • Nikhil Gopalkrishnan
  • Andrew Phillips
  • John Reif
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6937)


Molecular computing executed via local interactions of spatially contiguous sets of molecules has potential advantages of (i) speed due to increased local concentration of reacting species, (ii) generally sharper switching behavior and higher precision due to single molecule interactions, (iii) parallelism since each circuit operates independently of the others and (iv) modularity and scalability due to the ability to reuse DNA sequences in spatially separated regions. We propose detailed designs for local molecular computations that involve spatially contiguous molecules arranged on addressable substrates. The circuits act via enzyme-free DNA hybridization reaction cascades. Our designs include composable OR, AND and propagation Boolean gates, and techniques to achieve higher degree fan-in and fan-out. A biophysical model of localized hybridization reactions is used to estimate the effect of locality on reaction rates. We also use the Visual DSD simulation software in conjunction with localized reaction rates to simulate a localized circuit for computing the square root of a four bit number.


Propagation Gate Strand Displacement Hybridization Circuit Double Stranded Region Binding Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems. Science 266(5178), 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Sherman, W., Seeman, N.: A Precisely Controlled DNA Biped Walking Device. Nano Letters 4, 1203–1207 (2004)CrossRefGoogle Scholar
  3. 3.
    Zhang, D., Turberfield, A., Yurke, B., Winfree, E.: Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA. Science 318, 1121–1125 (2007)CrossRefGoogle Scholar
  4. 4.
    Yin, P., Choi, H., Calvert, C., Pierce, N.: Programming Biomolecular Self-assembly Pathways. Nature 451(7176), 318–322 (2008)CrossRefGoogle Scholar
  5. 5.
    Dirks, R., Pierce, N.: Triggered Amplification by Hybridization Chain Reaction. Proceedings of the National Academy of Sciences of the United States of America 101(43), 15275–15278 (2004)CrossRefGoogle Scholar
  6. 6.
    Sakamoto, K., Kiga, D., Momiya, K., Gouzu, H., Yokoyama, S., Ikeda, S., Sugiyama, H., Hagiya, M.: State Transitions by Molecules. Biosystems, 81–91 (1999)Google Scholar
  7. 7.
    Qian, L., Winfree, E.: Scaling up Digital Circuit Computation with DNA Strand Displacement Cascades. Science 332(6034), 1196–1201 (2011)CrossRefGoogle Scholar
  8. 8.
    Rothemund, P., Winfree, E.: The Program-Size Complexity of Self-Assembled Squares. In: Symposium on Theory of Computing, pp. 459–468 (2000)Google Scholar
  9. 9.
    Turberfield, A., Mitchell, J., Yurke, B., Mills, A., Blakey, M., Simmel, F.: DNA Fuel for Free-Running Nanomachines. Physical Review Letters 90(11) (2003)Google Scholar
  10. 10.
    Seelig, G., Yurke, B., Winfree, E.: Catalyzed Relaxation of a Metastable DNA Fuel. Journal of the American Chemical Society 128(37), 12211–12220 (2006)CrossRefGoogle Scholar
  11. 11.
    He, Y., Liu, D.: Autonomous Multistep Organic Synthesis in a Single Isothermal Solution Mediated by a DNA Walker. Nature Nanotechnology 5(11), 778–782 (2010)CrossRefGoogle Scholar
  12. 12.
    Gu, H., Chao, J., Xiao, S.-J., Seeman, N.: A Proximity-based Programmable DNA Nanoscale Assembly Line. Nature 465(7295), 202–205 (2010)CrossRefGoogle Scholar
  13. 13.
    Yan, H., Park, S.H., Finkelstein, G., Reif, J., LaBean, T.: DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires. Science 301(5641), 1882–1884 (2003)CrossRefGoogle Scholar
  14. 14.
    Rothemund, P.: Folding DNA to Create Nanoscale Shapes and Patterns. Nature 440, 297–302 (2006)CrossRefGoogle Scholar
  15. 15.
    Qian, L., Winfree, E.: A Simple DNA Gate Motif for Synthesizing Large-scale Circuits. DNA Computing, 70–89 (2009)Google Scholar
  16. 16.
    Cardelli, L.: Two-Domain DNA Strand Displacement. DCM, 47–61 (2010)Google Scholar
  17. 17.
    Park, S.-H., Yin, P., Liu, Y., Reif, J., LaBean, T., Yan, H.: Programmable DNA Self-assemblies for Nanoscale Organization of Ligands and Proteins. Nano Letters 5, 729–733 (2005)CrossRefGoogle Scholar
  18. 18.
    Pistol, C., Dwyer, C.: Scalable, Low-cost, Hierarchical Assembly of Programmable DNA Nanostructures. Nanotechnology 18, 125305–125309 (2007)CrossRefGoogle Scholar
  19. 19.
    Lin, C., Liu, Y., Yan, H.: Self-Assembled Combinatorial Encoding Nanoarrays for Multiplexed Biosensing. Nano Letters 7(2), 507–512 (2007)CrossRefGoogle Scholar
  20. 20.
    Douglas, S., Dietz, H., Liedl, T., Hogberg, B., Graf, F., Shih, W.: Self-assembly of DNA into Nanoscale Three-dimensional Shapes. Nature 459(7245), 414–418 (2009)CrossRefGoogle Scholar
  21. 21.
    Dietz, H., Douglas, S., Shih, W.: Folding DNA into Twisted and Curved Nanoscale Shapes. Science 325(5941), 725–730 (2009)CrossRefGoogle Scholar
  22. 22.
    Zhang, D.: Towards Domain-Based Sequence Design for DNA Strand Displacement Reactions. DNA 16, 162–175 (2010)Google Scholar
  23. 23.
    Dirks, R., Bois, J., Schaeffer, J., Winfree, E., Pierce, N.: Thermodynamic Analysis of Interacting Nucleic Acid Strands. SIAM Review 49, 65–88 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Park, S.H., Pistol, C., Ahn, S.J., Reif, J., Lebeck, A., LaBean, C.D.T.: Finite-Size, Fully Addressable DNA Tile Lattices Formed by Hierarchical Assembly Procedures. Angewandte Chemie International Edition 45(5), 735–739 (2006)CrossRefGoogle Scholar
  25. 25.
    Genot, A., Zhang, D., Bath, J., Turberfield, A.: Remote Toehold: A Mechanism for Flexible Control of DNA Hybridization Kinetics. Journal of American Chemical Society 133(7), 2177–2182 (2011)CrossRefGoogle Scholar
  26. 26.
    Phillips, A., Cardelli, L.: A Programming Language for Composable DNA Circuits. Journal of The Royal Society Interface 6(11), 419–436 (2009)CrossRefGoogle Scholar
  27. 27.
    Zhang, D.Y., Winfree, E.: Control of DNA Strand Displacement Kinetics Using Toehold Exchange. Journal of the American Chemical Society 131(48), 17303–17314 (2009)CrossRefGoogle Scholar
  28. 28.
    Lakin, M., Youssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA Circuit Design. Journal of The Royal Society Interface (in press, 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Harish Chandran
    • 1
  • Nikhil Gopalkrishnan
    • 1
  • Andrew Phillips
    • 2
  • John Reif
    • 1
  1. 1.Department of Computer ScienceDuke UniversityUSA
  2. 2.Microsoft ResearchUSA

Personalised recommendations