Advertisement

Autonomous Resolution Based on DNA Strand Displacement

  • Alfonso Rodríguez-Patón
  • Iñaki Sainz de Murieta
  • Petr Sosík
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6937)

Abstract

We present a computing model based on the technique of DNA strand displacement which performs a chain of logical resolutions with logical formulae in conjunctive normal form. The model is enzyme-free and autonomous. Each clause of a formula is encoded in a separate DNA molecule: propositions are encoded assigning a strand to each proposition p, and its complementary strand to the proposition ¬p; clauses are encoded comprising different propositions in the same strand. The model allows to run logic programs composed of Horn clauses by cascading resolution steps and, therefore, possibly function as an autonomous programmable nano-device. This technique can be also used to solve SAT. The resulting SAT algorithm has a linear time complexity in the number of resolution steps, whereas its spatial complexity is exponential in the number of variables of the formula.

Keywords

Conjunctive Normal Form Logical Formula Horn Clause Strand Displacement Resolution Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deans, T.L., Cantor, C.R., Collins, J.J.: A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell 130(2), 363–372 (2007)CrossRefGoogle Scholar
  2. 2.
    Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)CrossRefGoogle Scholar
  3. 3.
    Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H., Weiss, R.: A synthetic multicellular system for programmed pattern formation. Nature 434(7037), 1130–1134 (2005)CrossRefGoogle Scholar
  4. 4.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)CrossRefGoogle Scholar
  5. 5.
    Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: Modular multi-level circuits from immobilized DNA-based logic gates. J. Am. Chem. Soc. 129(48), 14875–14879 (2007)CrossRefGoogle Scholar
  6. 6.
    Takahashi, K., Yaegashi, S., Kameda, A., Hagiya, M.: Chain reaction systems based on loop dissociation of DNA. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 347–358. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Cardelli, L.: Strand Algebras for DNA Computing. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp. 12–24. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Kobayashi, S.: Horn clause computation with DNA molecules. J. Comb. Optim. 3, 277–299 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Uejima, H., Hagiya, M., Kobayashi, S.: Horn clause computation by self-assembly of DNA molecules. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 308–320. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Wasiewicz, P., Janczak, T., Mulawka, J.J., Plucienniczak, A.: The inference based on molecular computing. Cybernetics and Systems: An International Journal 31(3), 283–315 (2000)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ran, T., Kaplan, S., Shapiro, E.: Molecular implementation of simple logic programs. Nature Nanotechnology 4(10), 642–648 (2009)CrossRefGoogle Scholar
  12. 12.
    Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414(6862), 430–434 (2001)CrossRefGoogle Scholar
  13. 13.
    Rodríguez-Patón, A., Larrea, J.M., Sainz de Murieta, I.: Inference with DNA molecules. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds.) UC 2010. LNCS, vol. 6079, page 192. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Panyutin, I.G., Hsieh, P.: The kinetics of spontaneous dna branch migration. Proceedings of the National Academy of Sciences 91(6), 2021–2025 (1994)CrossRefGoogle Scholar
  15. 15.
    Biswas, I., Yamamoto, A., Hsieh, P.: Branch migration through DNA sequence heterology. Journal of Molecular Biology 279(4), 795–806 (1998)CrossRefGoogle Scholar
  16. 16.
    Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: Scalable, time-responsive, digital, energy-efficient molecular circuits using DNA strand displacement. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 25–36. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Lipton, R.J.: DNA solution of hard computational problems. Science 268(5210), 542–545 (1995)CrossRefGoogle Scholar
  18. 18.
    Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., Hagiya, M.: Molecular computation by DNA hairpin formation. Science 288(5469), 1223–1226 (2000)CrossRefGoogle Scholar
  19. 19.
    Manca, V., Zandron, C.: A clause string DNA algorithm for SAT. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 172–181. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Manca, V.: DNA and membrane algorithms for SAT. Fundamenta Informaticae 49(1), 205–221 (2002)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Ogihara, M.: Breadth first search 3SAT algorithms for DNA computers (1996)Google Scholar
  22. 22.
    Wang, X., Bao, Z., Hu, J., Wang, S., Zhan, A.: Solving the SAT problem using a DNA computing algorithm based on ligase chain reaction. Biosystems 91(1), 117–125 (2008)CrossRefGoogle Scholar
  23. 23.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences 107(12), 5393–5398 (2010)CrossRefGoogle Scholar
  24. 24.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Stahl, F.W.: The Holliday junction on its thirtieth anniversary.. Genetics 138(2), 241–246 (1994)Google Scholar
  26. 26.
    Liu, Y., West, S.C.: Happy Hollidays: 40th anniversary of the Holliday junction. Nature Reviews Molecular Cell Biology 5(11), 937–944 (2004)CrossRefGoogle Scholar
  27. 27.
    Cook, S.A.: The complexity of theorem-proving procedures. In: STOC 1971: Proceedings of the Third Annual ACM Symposium on Theory of Computing, New York, NY, USA, pp. 151–158 (1971)Google Scholar
  28. 28.
    Esteban, J.L., Torán, J.: Space Bounds for Resolution. Information and Computation 171(1), 84–97 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alfonso Rodríguez-Patón
    • 1
  • Iñaki Sainz de Murieta
    • 1
  • Petr Sosík
    • 1
    • 2
  1. 1.Departamento de Inteligencia ArtificialUniversidad Politécnica de Madrid (UPM)MadridSpain
  2. 2.Institute of Computer ScienceSilesian UniversityOpavaCzech Republic

Personalised recommendations