Advertisement

Cooperative Assembly Systems

  • Vincent Danos
  • Heinz Koeppl
  • John Wilson-Kanamori
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6937)

Abstract

Several molecular systems form large-scale objects. One would like to understand their assembly and how this assembly is regulated. As a first step, we investigate the phase transition structure of a class of bipartite cooperative assembly systems. We characterize which of these systems have a (probabilistic) equilibrium and find an explicit form for their local energy (§2). We obtain, under additional limitations on cooperativity, the average dynamics of some partial observables (§4). Combining both steps, we obtain conditions for the phase transition to a large cluster (§5).

Keywords

Random Graph Degree Distribution Reversible Rule Partial Observable Average Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differential semantics of rule-based models: Exact and automated model reduction. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, Edinburgh, United Kingdom, July 11-14, pp. 362–381 (2010)Google Scholar
  2. 2.
    Danos, V., Feret, J., Fontana, W., Krivine, J.: Abstract interpretation of cellular signalling networks. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 83–97. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Danos, V., Oury, N.: Equilibrium and termination II: the case of Petri nets (2010) (to appear in MSCS)Google Scholar
  4. 4.
    Danos, V., Schumacher, L.J.: How liquid is biological signalling? Theoretical Computer Science 410(11), 1003–1012 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Durrett, R.: Random graph dynamics, vol. 20. CUP (2007)Google Scholar
  6. 6.
    Feret, J., Danos, V., Harmer, R., Krivine, J., Fontana, W.: Internal coarse-graining of molecular systems. PNAS 106(16), 6453–6458 (2009)CrossRefGoogle Scholar
  7. 7.
    Harmer, R., Danos, V., Feret, J., Krivine, J., Fontana, W.: Intrinsic Information carriers in combinatorial dynamical systems. Chaos 20(3), 037108 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Harris, T.: The theory of branching processes. Dover (1989)Google Scholar
  9. 9.
    Koeppl, H., Hafner, M., Danos, V.: Rule-based modeling for protein-protein interaction networks - the Cyanobacterial circadian clock as a case study. In: WCSB 2009 Proceedings, pp. 87–91 (2009)Google Scholar
  10. 10.
    Koeppl, H., Schumacher, L.J., Danos, V.: A statistical analysis of receptor clustering using random graphs. In: WCSB 2009 Proceedings, pp. 95–99 (2009)Google Scholar
  11. 11.
    Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Structures & Algorithms 6(2-3), 161–180 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ollivier, J., Shahrezaei, V., Swain, P.: Scalable rule-based modelling of allosteric proteins and biochemical networks. PLoS Computational Biology 6(11) (2010)Google Scholar
  13. 13.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with dna strand displacement cascades. Science 332(6034), 1196 (2011)CrossRefGoogle Scholar
  14. 14.
    Saiz, L., Vilar, J.: Stochastic dynamics of macromolecular-assembly networks. Molecular Systems Biology 2(1) (2006)Google Scholar
  15. 15.
    Sneddon, M., Faeder, J., Emonet, T.: Efficient modeling, simulation and coarse-graining of biological complexity with nfsim. Nature Methods (2010)Google Scholar
  16. 16.
    Williamson, J.R.: Cooperativity in macromolecular assembly. Nat. Chem. Biol. 4(8), 458–465 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vincent Danos
    • 1
  • Heinz Koeppl
    • 2
  • John Wilson-Kanamori
    • 1
  1. 1.LFCS, School of InformaticsUniversity of EdinburghUK
  2. 2.ETH ZurichSwitzerland

Personalised recommendations