Improvements in Data Quality for Decision Support in Intensive Care

  • Filipe Portela
  • Marta Vilas-Boas
  • Manuel Filipe Santos
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 69)


Nowadays, there is a plethora of technology in hospitals and, in particular, in intensive care units. The clinical data produced everyday can be integrated in a decision support system in real-time to improve quality of care of the critically ill patients. However, there are many sensitive aspects that must be taken into account, mainly the data quality and the integration of heterogeneous data sources. This paper presents INTCare, an Intelligent Decision Support System for Intensive Care in real-time and addresses the previous aspects, in particular, the development of an Electronic Nursing Record and the improvements in the quality of monitored data.


Patient ID Data Quality Data Acquisition Real-Time Null Values Electronic Nursing Records 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Häyrinen, K., Saranto, K., Nykänen, P.: Definition, structure, content, use and impacts of electronic health records: A review of the research literature. International Journal of Medical Informatics 77, 291–304 (2008)CrossRefGoogle Scholar
  2. 2.
    Timmermans, S.: Health Care Technology. In: Neil, J.S., Paul, B.B. (eds.) International Encyclopedia of the Social & Behavioral Sciences, pp. 6544–6550. Pergamon, Oxford (2001)CrossRefGoogle Scholar
  3. 3.
    Handel, D.A., Hackman, J.L.: Implementing Electronic Health Records in the Emergency Department. The Journal of Emergency Medicine 38, 257–263 (2010)CrossRefGoogle Scholar
  4. 4.
    Nowinski, C.J., Becker, S.M., Reynolds, K.S., Beaumont, J.L., Caprini, C.A., Hahn, E.A., Peres, A., Arnold, B.J.: The impact of converting to an electronic health record on organizational culture and quality improvement. International Journal of Medical Informatics 76, S174–S183 (2007)CrossRefGoogle Scholar
  5. 5.
    Meyfroidt, G.: How to implement information technology in the operating room and the intensive care unit. Best Practice & Research Clinical Anaesthesiology 23, 1–14 (2009)CrossRefGoogle Scholar
  6. 6.
    De Turck, F., Decruyenaere, J., Thysebaert, P., Van Hoecke, S., Volckaert, B., Danneels, C., Colpaert, K., De Moor, G.: Design of a flexible platform for execution of medical decision support agents in the intensive care unit. Computers in Biology and Medicine 37, 97–112 (2007)CrossRefGoogle Scholar
  7. 7.
    Sado, A.S.: Electronic Medical Record in the Intensive Care Unit. Critical Care Clinics 15, 499–522 (1999)CrossRefGoogle Scholar
  8. 8.
    Herasevich, V., Keegan, M.T., Tines, D., Malinchoc, M.M., Hanson, A.C., Katyal, P., Hubmayr, R.D., Afessa, B., Gajic, O.: ICU of the future: informatics infrastructure for syndrome surveillance, decision support, data mining, and modeling of critical illness. Journal of Critical Care 22, 340 (2007)CrossRefGoogle Scholar
  9. 9.
    Abelha, A., Machado, J., Santos, M., Allegro, S., Rua, F., Paiva, M., Neves, J.: Agency for Integration, Diffusion and Archive of Medical Information. In: Conference Agency for Integration, Diffusion and Archive of Medical Information (Year) Google Scholar
  10. 10.
    Santos, M.F.e.a.: Information Modeling for Real-Time Decision Support in Intensive Medicine. In: Proceedings of the 8th Wseas International Conference on Applied Computer and Applied Computational Science (2009) Google Scholar
  11. 11.
    Garg, A.X., Adhikari, N.K.J., McDonald, H., Rosas-Arellano, M.P., Devereaux, P.J., Beyene, J., Sam, J., Haynes, R.B.: Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. Jama 293, 1223 (2005)CrossRefGoogle Scholar
  12. 12.
    Santos, M.F., Vilas-Boas, M., Machado, J., Neves, J., Silva, A., Rua, F., Salazar, M., Quintas, C., Cabral, A.F.: Intelligent Decision Support in Intensive Care Units - Nursing Information Requirements (2009) Google Scholar
  13. 13.
    Santos, M.F., Portela, F., Vilas-Boas, M., Machado, J., Abelha, A., Neves, J.: Information Architecture for Intelligent Decision Support in Intensive Medicine. In: 8th WSEAS International Conference on Applied Computer & amp; Applied Computational Science (ACACOS 2009), vol. 8. WSEAS, Hangzhou (2009)Google Scholar
  14. 14.
    Silva, Á.: Modelos de Inteligência Artificial na análise da monitorização de eventos clínicos adversos, Disfunção/Falência de órgãos e prognóstico do doente critico. Ciências Médicas, Doutoramento, p. 281. Universidade do Porto, Porto (2007) Google Scholar
  15. 15.
    Varshney, U.: Pervasive healthcare and wireless health monitoring. Mobile Networks and Applications 12, 113–127 (2007)CrossRefGoogle Scholar
  16. 16.
    Westra, B.L.: Radio Frequency Identification. AJN The American Journal of Nursing 109, 34 (2009)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2011

Authors and Affiliations

  • Filipe Portela
    • 1
  • Marta Vilas-Boas
    • 1
  • Manuel Filipe Santos
    • 1
  1. 1.University of MinhoGuimarãesPortugal

Personalised recommendations