Advertisement

Mapping the Effects of Aβ1 − 42 Levels on the Longitudinal Changes in Healthy Aging: Hierarchical Modeling Based on Stationary Velocity Fields

  • Marco Lorenzi
  • Nicholas Ayache
  • Giovanni B Frisoni
  • Xavier Pennec
  • ADNI
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6892)

Abstract

Mapping the effects of different clinical conditions on the evolution of the brain structural changes is of central interest in the field of neuroimaging. A reliable description of the cross-sectional longitudinal changes requires the consistent integration of intra and inter-subject variability in order to detect the subtle modifications in populations. In computational anatomy, the changes in the brain are often measured by deformation fields obtained through non rigid registration, and the stationary velocity field (SVF) parametrization provides a computationally efficient registration scheme. The aim of this study is to extend this framework into an efficient and robust multilevel one for accurately modeling the longitudinal changes in populations. This setting is used to investigate the subtle effects of the positivity of the CSF Aβ 1 − 42 levels on brain atrophy in healthy aging. Thanks to the higher sensitivity of our framework, we obtain statistically significant results that highlight the relationship between brain damage and positivity to the marker of Alzheimer’s disease and suggest the presence of a presymptomatic pattern of the disease progression.

Keywords

Brain Atrophy Healthy Aging Longitudinal Change Parallel Transport Rigid Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Avants, B., Anderson, C., Grossman, M., Gee, J.: Spatiotemporal normalization for longitudinal analysis of gray matter atrophy in frontotemporal dementia. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 303–310. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Cachier, P.: Recalage non rigide d’images madicales volumiques, contributions aux approches iconiques et geometriques. PhD thesis (2002)Google Scholar
  4. 4.
    Fjell, A., Walhovd, K., Notestine, C., McEvoy, L., Hagler, D., Holland, D., Blennow, K., Brewer, J., Dale, A.: The Alzheimer’s Disease Neuroimaging Initiative: Brain atrophy in healthy aging is related to CSF levels of Ab1-42. Cereb. Cortex, 20-9 (2010)Google Scholar
  5. 5.
    Frisoni, G., Fox, N., Jack Jr., C.R., Scheltens, P., Thompson, P.: The clinical use of structural MRI in Alzheimer’s disease. Nat. Rev. Neurol. 6, 67–77 (2010)Google Scholar
  6. 6.
    Guimond, A., Meunier, J., Thirion, J.: Average Brain Models: A Convergence Study. Computer Vision and Image Understanding 77-2 (2000)Google Scholar
  7. 7.
    Lorenzi, M., Ayache, N., Frisoni, G., Pennec, X.: 4D registration of serials brain’s MR images: A robust measure of changes applyed to Alzheimer’s disease. In: Spatio Temporal Image Analysis Workshop (STIA), MICCAI (2010)Google Scholar
  8. 8.
    Lorenzi, M., Ayache, N., Pennec, X.: Schild’s ladder for the parallel transport of deformations in time series of images. In: Székely, G., Hahn, H. (eds.) Information Processing in Medical Imaging - IPMI. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Miller, M., Trouvé, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Annu. Rev. Biomed. Eng. 4(1), 375–405 (2002)CrossRefGoogle Scholar
  10. 10.
    Mueller, S., Weiner, M., Thal, L., Peternsen, R., Jack, C., Jagust, W., Trojanowsky, J., Toga, A., Beckett, L.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. N. Am. 15(4), 869–877 (2005)Google Scholar
  11. 11.
    Patenaude, B., Smith, S., Kennedy, D., Jenkinson, M.: A Bayesian Model of Shape and Appearance for Subcortical Brain. NeuroImage (2011) (in press)Google Scholar
  12. 12.
    Postnikov, M.: Geometry VI. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Schott, J.M., Bartlett, J., Fox, N., Barnes, J., The Alzheimer’s Disease Neuroimaging Initiative Investigators: Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Ab1-42. Annals of Neurology 68-6 (2010)Google Scholar
  14. 14.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain diffeomorphic registration: A demons-based approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Younes, L., Qiu, A., Winslow, R., Miller, M.: Transport of relational structures in groups of diffeomorphisms. J. Math. Imaging Vis. 32(1), 41–56 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marco Lorenzi
    • 1
    • 2
  • Nicholas Ayache
    • 1
  • Giovanni B Frisoni
    • 2
  • Xavier Pennec
    • 1
  • ADNI
  1. 1.Project Team Asclepios, INRIA Sophia AntipolisFrance
  2. 2.LENITEM, IRCCS San Giovanni di Dio, FatebenefratelliBresciaItaly

Personalised recommendations