Automatic Construction of Statistical Shape Models for Vertebrae

  • Meike Becker
  • Matthias Kirschner
  • Simon Fuhrmann
  • Stefan Wesarg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6892)


For segmenting complex structures like vertebrae, a priori knowledge by means of statistical shape models (SSMs) is often incorporated. One of the main challenges using SSMs is the solution of the correspondence problem. In this work we present a generic automated approach for solving the correspondence problem for vertebrae. We determine two closed loops on a reference shape and propagate them consistently to the remaining shapes of the training set. Then every shape is cut along these loops and parameterized to a rectangle. There, we optimize a novel combined energy to establish the correspondences and to reduce the unavoidable area and angle distortion. Finally, we present an adaptive resampling method to achieve a good shape representation. A qualitative and quantitative evaluation shows that using our method we can generate SSMs of higher quality than the ICP approach.


Minimum Description Length Correspondence Problem Statistical Shape Model Automatic Construction Reference Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Besl, P.J., Mckay, H.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  2. 2.
    Brett, A., Taylor, C.: Construction of 3D shape models of femoral articular cartilage using harmonic maps. In: Delp, S., DiGoia, A., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 1205–1214. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Cates, J.E., Fletcher, P.T., Styner, M.A., Shenton, M.E., Whitaker, R.T.: Shape modeling and analysis with entropy-based particle systems. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 333–345. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models their training and application. Comput. Vis. Image Underst. 61, 38–59 (1995)CrossRefGoogle Scholar
  5. 5.
    Davies, R.H., Twining, C.J., Taylor, C.J.: Statistical Models of Shape: Optimisation and Evaluation. Springer, London (2008)zbMATHGoogle Scholar
  6. 6.
    Degener, P., Meseth, J., Klein, R.: An adaptable surface parameterization method. In: 12th International Meshing Roundtable 2003, Santa Fe, pp. 201–213 (2003)Google Scholar
  7. 7.
    Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 1038–1046. SIAM, Vancouver (2005)Google Scholar
  8. 8.
    Fuhrmann, S., Ackermann, J., Kalbe, T., Goesele, M.: Direct resampling for isotropic surface remeshing. In: Vision, Modeling, and Visualization 2010, pp. 9–16. Eurographics Association, Siegen (2010)Google Scholar
  9. 9.
    Heimann, T., Wolf, I., Meinzer, H.P.: Automatic generation of 3D statistical shape models with optimal landmark distribution. Methods Inf. Med. 46(3), 275–281 (2007)Google Scholar
  10. 10.
    Heimann, T., Wolf, I., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: A review. Medical Image Analysis 13(4), 543–563 (2009)CrossRefGoogle Scholar
  11. 11.
    Hormann, K., Lévy, B., Sheffer, A.: Mesh parameterization: Theory and practice. In: SIGGRAPH 2007 Course Notes, vol. 2. ACM Press, San Diego (2007)Google Scholar
  12. 12.
    Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., Lorenz, C.: Automated model-based vertebra detection, identification, and segmentation in CT images. Medical Image Analysis 13(3), 471–482 (2009)CrossRefGoogle Scholar
  13. 13.
    Lamecker, H., Lange, T., Seebass, M.: A statistical shape model for the liver. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 421–427. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Meier, D., Fisher, E.: Parameter space warping: shape-based correspondence between morphologically different objects. IEEE Trans. Med. Imaging 21(1), 31–47 (2002)CrossRefGoogle Scholar
  15. 15.
    Munkres, J.R.: Topology. Prentice Hall, Upper Saddle River (2000)zbMATHGoogle Scholar
  16. 16.
    Steiner, D., Fischer, A.: Planar parameterization for closed manifold genus-g meshes using any type of positive weights. J. Comput. Inf. Sci. Eng. 5, 118–125 (2005)CrossRefGoogle Scholar
  17. 17.
    Tewari, G., Gotsman, C., Gortler, S.J.: Meshing genus-1 point clouds using discrete one-forms. Computers and Graphics 30(6), 917–926 (2006)CrossRefGoogle Scholar
  18. 18.
    Tutte, W.T.: How to draw a graph. London Math. Soc. 13, 743–768 (1963)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Meike Becker
    • 1
  • Matthias Kirschner
    • 1
  • Simon Fuhrmann
    • 1
  • Stefan Wesarg
    • 1
  1. 1.GRISTU DarmstadtDarmstadtGermany

Personalised recommendations