Voxel based morphometry (VBM) is widely used in the neuroimaging community to infer group differences in brain morphology. VBM is effective in quantifying group differences highly localized in space. However it is not equally effective when group differences might be based on interactions between multiple brain networks. We address this by proposing a new framework called pattern based morphometry (PBM). PBM is a data driven technique. It uses a dictionary learning algorithm to extract global patterns that characterize group differences. We test this approach on simulated and real data obtained from ADNI . In both cases PBM is able to uncover complex global patterns effectively.


machine learning pattern based morphometry voxel based morphometry 


  1. 1.
    The alzheimer’s disease neuroimaging initiative,
  2. 2.
    Agosta, F., Pievani, M., Sala, S., Geroldi, C., Galluzzi, S., Frisoni, G.B., Filippi, M.: White matter damage in alzheimer disease and its relationship to gray matter atrophy. Radiology 258(3), 853–863 (2011), CrossRefGoogle Scholar
  3. 3.
    Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  4. 4.
    Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. Neuroimage 11(6 Pt. 1), 805–821 (2000), CrossRefGoogle Scholar
  5. 5.
    Bookstein, F.L.: ”voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage 14(6), 1454–1462 (2001), CrossRefGoogle Scholar
  6. 6.
    Davatzikos, C., Genc, A., Xu, D., Resnick, S.M.: Voxel-based morphometry using the ravens maps: methods and validation using simulated longitudinal atrophy. Neuroimage 14(6), 1361–1369 (2001), CrossRefGoogle Scholar
  7. 7.
    Davatzikos, C.: Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. Neuroimage 23(1), 17–20 (2004), CrossRefGoogle Scholar
  8. 8.
    Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. on Image Processing 15(12), 3736–3745 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    de Jong, L.W., van der Hiele, K., Veer, I.M., Houwing, J.J., Westendorp, R.G.J., Bollen, E.L.E.M., de Bruin, P.W., Middelkoop, H.A.M., van Buchem, M.A., van der Grond, J.: Strongly reduced volumes of putamen and thalamus in alzheimer’s disease: an mri study. Brain 131(Pt. 12), 3277–3285 (2008), CrossRefGoogle Scholar
  10. 10.
    Scheltens, P., Barkhof, F., Valk, J., Algra, P.R., van der Hoop, R.G., Nauta, J., Wolters, E.C.: White matter lesions on magnetic resonance imaging in clinically diagnosed alzheimer’s disease. evidence for heterogeneity. Brain 115 (Pt. 3), 735–748 (1992)CrossRefGoogle Scholar
  11. 11.
    Shen, D., Davatzikos, C.: Hammer: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imaging 21(11), 1421–1439 (2002), CrossRefGoogle Scholar
  12. 12.
    Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002), CrossRefGoogle Scholar
  13. 13.
    Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Transactions on Information Theory 50(10), 2231–2242 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bilwaj Gaonkar
    • 1
  • Kilian Pohl
    • 1
  • Christos Davatzikos
    • 1
  1. 1.Section for Biomedical Image AnalysisUniversity of PennsylvaniaUSA

Personalised recommendations