Advertisement

Comparison of Shape Regression Methods under Landmark Position Uncertainty

  • Nora Baka
  • Coert Metz
  • Michiel Schaap
  • Boudewijn Lelieveldt
  • Wiro Niessen
  • Marleen de Bruijne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6892)

Abstract

Despite the growing interest in regression based shape estimation, no study has yet systematically compared different regression methods for shape estimation. We aimed to fill this gap by comparing linear regression methods with a special focus on shapes with landmark position uncertainties. We investigate two scenarios: In the first, the uncertainty of the landmark positions was similar in the training and test dataset, whereas in the second the uncertainty of the training and test data were different. Both scenarios were tested on simulated data and on statistical models of the left ventricle estimating the end-systolic shape from end-diastole with landmark uncertainties derived from the segmentation process, and of the femur estimating the 3D shape from one projection with landmark uncertainties derived from the imaging setup. Results show that in the first scenario linear regression methods tend to perform similar. In the second scenario including estimates of the test shape landmark uncertainty in the regression improved results.

Keywords

Root Mean Square Error Partial Little Square Root Mean Square Ordinary Little Square Ridge Regression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ablitt, N.A., Gao, J., Keegan, J., Stegger, L., Firmin, D.N., Yang, G.Z.: Predictive cardiac motion modeling and correction with partial least squares regression. IEEE Trans. Med. Imaging 23(10), 1315–1324 (2004)CrossRefGoogle Scholar
  2. 2.
    Baka, N., de Bruijne, M., Niessen, W., Reiber, J.H.C., Lelieveldt, B.: Confidence of model based shape reconstruction from sparse data. In: IEEE ISBI (2010)Google Scholar
  3. 3.
    Blanc, R., Syrkina, E., Székely, G.: Estimating the confidence of statistical model based shape prediction. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 602–613. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    de Bruijne, M., Lund, M.T., Tankó, L.B., Pettersen, P.C., Nielsen, M.: Quantitative vertebral morphometry using neighbor-conditional shape models. Med. Image Anal. 11(5), 503–512 (2007)CrossRefGoogle Scholar
  5. 5.
    Ferrarini, L., Olofsen, H., Palm, W., van Buchem, M., Reiber, J., Admiraal-Behloul, F.: Games: growing and adaptive meshes for fully automatic shape modeling and analysis. Med. Image Anal. 11, 302–314 (2007)CrossRefGoogle Scholar
  6. 6.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning (Data mining, Inference, and Prediction). Springer, Heidelberg (2009)zbMATHGoogle Scholar
  7. 7.
    Klinder, T., Lorenz, C., Ostermann, J.: Prediction framework for statistical respiratory motion modeling. In: Jiang, T., Navab, N., Pluim, J., Viergever, M. A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 327–334. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Liu, T., Shen, D., Davatzikos, C.: Predictive Modeling of Anatomic Structures Using Canonical Correlation Analysis. In: IEEE ISBI, pp. 1279–1282 (2004)Google Scholar
  9. 9.
    Metz, C., Baka, N., Kirisli, H., Schaap, M., van Walsum, T., Klein, S., Neefjes, L., Mollet, N., Lelieveldt, B., de Bruijne, M., Niessen, W.: Conditional shape models for cardiac motion estimation. In: Jiang, T., Navab, N., Pluim, J., Viergever, M. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 452–459. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Rajamani, K.T., Styner, M.A., Talib, H., Zheng, G., Nolte, L.P., Ballester, M.A.: Statistical deformable bone models for robust 3d surface extrapolation from sparse data. Medical Image Analysis 11(2), 99–109 (2007)CrossRefGoogle Scholar
  11. 11.
    Rao, A., Aljabar, P., Rueckert, D.: Hierarchical statistical shape analysis and prediction of sub-cortical brain structures. Med. Image Anal. 12(1), 55–68 (2008)CrossRefGoogle Scholar
  12. 12.
    Reis, M.S., Saraiva, P.M.: A comparative study of linear regression methods in noisy environments. J. Chemometrics 18, 526–536 (2004)CrossRefGoogle Scholar
  13. 13.
    Wentzell, P.D., Andrews, D.T., Hamilton, D.C., Klaas, F., Kowalski, B.R.: Maximum likelihood principal component analysis. Chemometrics 11, 339–366 (1997)CrossRefGoogle Scholar
  14. 14.
    Yang, Y.M., Rueckert, D., Bull, A.M.J.: Predicting the Shapes of Bones at a Joint: Application to the Shoulder. Computer Methods in Biomechanics and Biomedical Engineering 11(1), 19–30 (2008)CrossRefGoogle Scholar
  15. 15.
    Zheng, G., Gollmer, S., Schumann, S., Dong, X., Feilkas, T., Ballester, M.A.G.: A 2d/3d correspondence building method for reconstruction of a patient-specific 3d bone surface model using point distribution models and calibrated x-ray images. Med. Image Anal. 13(6), 883–899 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nora Baka
    • 1
    • 2
  • Coert Metz
    • 1
  • Michiel Schaap
    • 1
  • Boudewijn Lelieveldt
    • 2
    • 4
  • Wiro Niessen
    • 1
    • 4
  • Marleen de Bruijne
    • 1
    • 3
  1. 1.Erasmus MCRotterdamThe Netherlands
  2. 2.Leiden University Medical CenterLeidenThe Netherlands
  3. 3.University of CopenhagenDenmark
  4. 4.Delft University of TechnologyThe Netherlands

Personalised recommendations