Conformal Metric Optimization on Surface (CMOS) for Deformation and Mapping in Laplace-Beltrami Embedding Space

  • Yonggang Shi
  • Rongjie Lai
  • Raja Gill
  • Daniel Pelletier
  • David Mohr
  • Nancy Sicotte
  • Arthur W. Toga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6892)


In this paper we develop a novel technique for surface deformation and mapping in the high-dimensional Laplace-Beltrami embedding space. The key idea of our work is to realize surface deformation in the embedding space via optimization of a conformal metric on the surface. Numerical techniques are developed for computing derivatives of the eigenvalues and eigenfunctions with respect to the conformal metric, which is then applied to compute surface maps in the embedding space by minimizing an energy function. In our experiments, we demonstrate the robustness of our method by applying it to map hippocampal atrophy of multiple sclerosis patients with depression on a data set of 109 subjects. Statistically significant results have been obtained that show excellent correlation with clinical variables. A comparison with the popular SPHARM tool has also been performed to demonstrate that our method achieves more significant results.


Weight Function Multiple Sclerosis Patient Triangular Mesh Surface Mapping Hippocampal Atrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Thompson, P., Hayashi, K., de Zubicaray, G., Janke, A., Rose, S., Semple, J., Hong, M., Herman, D., Gravano, D., Doddrell, D., Toga, A.: Mapping hippocampal and ventricular change in Alzheimer disease. NeuroImage 22(4), 1754–1766 (2004)CrossRefGoogle Scholar
  2. 2.
    Joshi, S., Miller, M.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Imag. Process. 9(8), 1357–1370 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Davies, R., Twining, C., Allen, P., Cootes, T., Taylor, C.: Shape discrimination in the hippocampus using an MDL model. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 38–50. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Yeo, B., Sabuncu, M., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: Fast surface registration. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 745–753. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Styner, M., Oguz, I., Xu, S., Brechbühler, C., Pantazis, D., Levitt, J., Shenton, M., Gerig, G.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. The Insight Journal (2006)Google Scholar
  6. 6.
    Yushkevich, P., Zhang, H., Gee, J.: Continuous medial representation for anatomical structures. IEEE Trans. Med. Imag. 25(12), 1547–1564 (2006)CrossRefGoogle Scholar
  7. 7.
    Reuter, M., Wolter, F., Peinecke, N.: Laplace-Beltrami spectra as Shape-DNA of surfaces and solids. In: Computer-Aided Design, vol. 38, pp. 342–366 (2006)Google Scholar
  8. 8.
    Qiu, A., Bitouk, D., Miller, M.: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator. IEEE Trans. Med. Imag. 25(10), 1296–1306 (2006)CrossRefGoogle Scholar
  9. 9.
    Shi, Y., Lai, R., Krishna, S., Sicotte, N., Dinov, I., Toga, A.: Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons. In: Proc. MMBIA, pp. 1–7 (2008)Google Scholar
  10. 10.
    Shi, Y., Morra, J., Thompson, P., Toga, A.: Inverse-consistent surface mapping with Laplace-Beltrami eigen-features. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 467–478. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Seo, S., Chung, M., Vorperian, H.: Heat kernel smoothing using Laplace-Beltrami eigenfunctions. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 505–512. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigenfunctions. Int’l Journal of Computer Vision 89(2-3), 287–308 (2010)CrossRefGoogle Scholar
  13. 13.
    Rustamov, R.M.: Laplace-beltrami eigenfunctions for deformation invariant shape representation. In: Proc. Eurograph. Symp. on Geo. Process. pp. 225–233 (2007)Google Scholar
  14. 14.
    Lai, R., Shi, Y., Scheibel, K., Fears, S., Woods, R., Toga, A., Chan, T.: Metric-induced optimal embedding for intrinsic 3D shape analysis. In: Proc. CVPR, pp. 2871–2878 (2010)Google Scholar
  15. 15.
    Nelson, R.: Simplified calculation of eigenvector derivatives. AIAA Journal 14(9), 1201–1205 (1976)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yonggang Shi
    • 1
  • Rongjie Lai
    • 2
  • Raja Gill
    • 3
  • Daniel Pelletier
    • 4
  • David Mohr
    • 5
  • Nancy Sicotte
    • 6
  • Arthur W. Toga
    • 1
  1. 1.Lab of Neuro ImagingUCLA School of MedicineLos AngelesUSA
  2. 2.Dept. of MathematicsUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Dept. of NeurologyUCLA School of MedicineLos AngelesUSA
  4. 4.Department of NeurologyYale School of MedicineNew HavenUSA
  5. 5.Department of Preventive MedicineNorthwestern University, Feinberg School of MedicineChicagoUSA
  6. 6.Cedar Sinai Medical CenterLos AngelesUSA

Personalised recommendations