Sheet-Like White Matter Fiber Tracts: Representation, Clustering, and Quantitative Analysis

  • Mahnaz Maddah
  • James V. Miller
  • Edith V. Sullivan
  • Adolf Pfefferbaum
  • Torsten Rohlfing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6892)


We introduce an automated and probabilistic method for subject-specific segmentation of sheet-like fiber tracts. In addition to clustering of trajectories into anatomically meaningful bundles, the method provides statistics of diffusion measures by establishing point correspondences on the estimated medial representation of each bundle. We also introduce a new approach for medial surface generation of sheet-like fiber bundles in order too initialize the proposed clustering algorithm. Applying the new method to a population study of brain aging on 24 subjects demonstrates the capabilities and strengths of the algorithm in identifying and visualizing spatial patterns of group differences.


Corpus Callosum Medial Surface Orientation Information Medial Representation Diffusion Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Corouge, I., Gouttard, S., Gerig, G.: A statistical shape model of individual fiber tracts extracted from diffusion tensor MRI. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 671–679. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Gouaillard, A., Florez-Valencia, L., Boix, E.: ItkQuadEdgeMesh: A discrete orientable 2-manifold data structure for image processing. The Insight Journal (2006)Google Scholar
  3. 3.
    Grosland, N.M., Shivanna, K.H., Magnotta, V.A., Kallemeyn, N.A., DeVries, N.A., Tadepalli, S.C., Lisle, C.: IA-FEMesh: An open-source, interactive, multiblock approach to anatomic finite element model development. Computer Methods and Programs in Biomedicine 94(1), 96 (2009)CrossRefGoogle Scholar
  4. 4.
    Kanaan, R.A., Shergill, S.S., Barker, G.J., Catani, M., Ng, V.W., Howard, R., McGuire, P.K., Jones, D.K.: Tract-specific anisotropy measurements in diffusion tensor imaging. Psychiatry Research 146(1), 73–82 (2006)CrossRefGoogle Scholar
  5. 5.
    Kwon, K.Y., Lee, B.C., Chae, S.W.: Medial surface generation using chordal axis transformation in shell structures. Computers and Structures 84(26-27), 1673 (2006)CrossRefGoogle Scholar
  6. 6.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: SIGGRAPH, pp. 163–169 (1987)Google Scholar
  7. 7.
    Maddah, M., Grimson, W.E.L., Warfield, S.K., Wells, W.M.: A unified framework for clustering and quantitative analysis of white matter fiber tracts. Med. Image Anal. 12, 191–202 (2008)CrossRefGoogle Scholar
  8. 8.
    Maddah, M., Kubicki, M., Wells, W.M., Westin, C.-F., Shenton, M.E., Grimson, W.E.L.: Findings in schizophrenia by tract-oriented DT-MRI analysis. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 917–924. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    O’Donnell, L.J., Westin, C.-F.: Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Trans. Med. Imag. 26, 1562–1575 (2007)CrossRefGoogle Scholar
  10. 10.
    Prasad, L.: Morphological analysis of shapes. CNLS Newsletter 139, 1–18 (1997)Google Scholar
  11. 11.
    Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E.J.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31, 1487–1505 (2006)CrossRefGoogle Scholar
  12. 12.
    Wakana, S., Jiang, H., Nagae-Poetscher, L.M., van Zijl, P.C.M., Mori, S.: Fiber tract-based atlas of human white matter anatomy. Radiology 230, 77–87 (2004)CrossRefGoogle Scholar
  13. 13.
    Wassermann, D., Bloy, L., Kanterakis, E., Verma, R., Deriche, R.: Unsupervised white matter fiber clustering and tract probability map generation: applications of a gaussian process framework for white matter fibers. NeuroImage 51(1), 228–241 (2010)CrossRefGoogle Scholar
  14. 14.
    Yushkevich, P., Zhang, H., Gee, J.: Continuous medial representation for anatomical structures. IEEE Trans. Med. Imag. 25(12), 1547 (2006)CrossRefGoogle Scholar
  15. 15.
    Zhang, H., Awate, S.P., Das, S.R., Woo, J.H., Melhem, E.R., Gee, J.C., Yushkevich, P.A.: A tract-specific framework for white matter morphometry combining macroscopic and microscopic tract features. Med. Image Anal. 14(5), 666 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mahnaz Maddah
    • 1
  • James V. Miller
    • 2
  • Edith V. Sullivan
    • 1
    • 3
  • Adolf Pfefferbaum
    • 1
    • 3
  • Torsten Rohlfing
    • 1
  1. 1.Neuroscience ProgramSRI InternationalMenlo ParkUSA
  2. 2.Interventional and TherapyGE Global ResearchNiskayunaUSA
  3. 3.Dept. of Psychiatry and Behavioral SciencesStanford UniversityStanfordUSA

Personalised recommendations