Feasibility and Advantages of Diffusion Weighted Imaging Atlas Construction in Q-Space

  • Thijs Dhollander
  • Jelle Veraart
  • Wim Van Hecke
  • Frederik Maes
  • Stefan Sunaert
  • Jan Sijbers
  • Paul Suetens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6892)

Abstract

In the field of diffusion weighted imaging (DWI), it is common to fit one of many available models to the acquired data. A hybrid diffusion imaging (HYDI) approach even allows to reconstruct different models and measures from a single dataset. Methods for DWI atlas construction (and registration) are as plenty as the number of available models. Therefore, it would be nice if we were able to perform atlas building before model reconstruction.

In this work, we present a method for atlas construction of DWI data in q-space: we developed a new multi-subject multi-channel diffeomorphic matching algorithm, which is combined with a recently proposed DWI retransformation method in q-space.

We applied our method to HYDI data of 10 healthy subjects. From the resulting atlas, we also reconstructed some advanced models. We hereby demonstrate the feasibility of q-space atlas building, as well as the quality, advantages and possibilities of such an atlas.

Keywords

Tract Volume Spherical Harmonic Representation Mean Kurtosis Constrain Spherical Deconvolution Spherical Deconvolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wu, Y.C., Alexander, A.L.: Hybrid Diffusion Imaging. NeuroImage 36(3), 617–629 (2007)CrossRefGoogle Scholar
  2. 2.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic Demons: Efficient Non-parametric Image Registration. NeuroImage 45(1), S61–S72 (2009)Google Scholar
  3. 3.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric Diffeomorphic Image Registration with Cross-Correlation: Evaluating Automated Labeling of Elderly and Neurodegenerative Brain. Medical Image Analysis 12(1), 26–41 (2008)CrossRefGoogle Scholar
  4. 4.
    Dhollander, T., Van Hecke, W., Maes, F., Sunaert, S., Suetens, P.: Spatial Transformations of High Angular Resolution Diffusion Imaging Data in Q-space. In: MICCAI 13, CDMRI Workshop, pp. 73–83 (2010)Google Scholar
  5. 5.
    Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct Estimation of the Fiber Orientation Density Function from Diffusion-Weighted MRI Data using Spherical Deconvolution. NeuroImage 23(3), 1176–1185 (2004)CrossRefGoogle Scholar
  6. 6.
    Tournier, J.D., Calamante, F., Connelly, A.: Robust Determination of the Fibre Orientation Distribution in Diffusion MRI: Non-negativity Constrained Super-resolved Spherical Deconvolution. NeuroImage 35(4), 1459–1472 (2007)CrossRefGoogle Scholar
  7. 7.
    Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K.: Diffusional Kurtosis Imaging: The Quantification of Non-Gaussian Water Diffusion by Means of Magnetic Resonance Imaging. MRM 53(6), 1432–1440 (2005)CrossRefGoogle Scholar
  8. 8.
    Veraart, J., Poot, D.H.J., Van Hecke, W., Blockx, I., Van der Linden, A., Verhoye, M., Sijbers, J.: More Accurate Estimation of Diffusion Tensor Parameters Using Diffusion Kurtosis Imaging. MRM 65(1), 138–145 (2011)CrossRefGoogle Scholar
  9. 9.
    Descoteaux, M., Deriche, R., Le Bihan, D., Mangin, J.F., Poupon, C.: Multiple Q-shell Diffusion Propagator Imaging. Medical Image Analysis (2010) (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thijs Dhollander
    • 1
    • 2
  • Jelle Veraart
    • 3
  • Wim Van Hecke
    • 1
    • 4
    • 5
  • Frederik Maes
    • 1
    • 2
  • Stefan Sunaert
    • 1
    • 4
  • Jan Sijbers
    • 3
  • Paul Suetens
    • 1
    • 2
  1. 1.Medical Imaging Research Center (MIRC)K.U. LeuvenLeuvenBelgium
  2. 2.Center for Processing Speech and Images (PSI), Department of Electrical Engineering (ESAT), Faculty of EngineeringK.U. LeuvenLeuvenBelgium
  3. 3.Vision Lab, Department of PhysicsUniversity of AntwerpAntwerpBelgium
  4. 4.Department of RadiologyUniversity Hospitals of the K.U. LeuvenLeuvenBelgium
  5. 5.Department of RadiologyUniversity Hospital AntwerpAntwerpBelgium

Personalised recommendations